Skip to main content
Log in

PEGylated polyethyleneimine grafted silica nanoparticles: enhanced cellular uptake and efficient siRNA delivery

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present paper reports the utilization of hybrid nanocomposite particles consisting of PEI25k-PEG5k copolymer grafted silica nanoparticles (SiO2NPs) for enhanced cellular uptake and siRNA delivery. High-resolution transmission electron microscopy and dynamic light scattering measurements ensured the average particle size of the final hybrid component as 45 nm (core SiO2, 28–30 nm and shell PEI25k-PEG5k, 12–15 nm). Surface morphology from atomic force microscopy analysis showed the significant relationship between the particle size and shape. 29Si and 13C cross-polarization–magic angle spinning solid state nuclear magnetic resonance (NMR), 1H-NMR, and Fourier transform infrared spectroscopy were used to obtain the relevant structural information (such as Q3, silanol; Q4, siloxane functional groups of SiO2NPs; resonance shifts and bending vibrations of PEI25k, –CH2–CH2–NH–; and PEG5k, –CH2–CH2–O–) from copolymer nanoparticle. Stable complexation of siRNA and nanocomposite particle (wt.%:wt.%) was achieved from 1:5 to 1:15 ratio. Nanocomposite particle (N/P) ratio and siRNA concentration determine the stability and knockdown efficiency of the PEI25k-PEG5k-graft-SiO2NPs–siRNA complexes. It was shown that highly positively charged (zeta potential, +66 mV) PEI25k-PEG5k-graft-SiO2NPs result in strong affinity with negatively charged siRNA. Confocal microscopy showed intensified cellular uptake of siRNA into cytoplasm of A549 cancer cell utilized for in vitro study. In conclusion, the coherence, graft density of copolymer-SiO2NPs, and siRNA concentration were found to strongly influence the stability, and hence determine the knockdown efficiency, of PEI25k-PEG5k-graft-SiO2NPs–siRNA complexes.

PEI25k-PEG5k-graft-SiO2NPs: enhanced cellular uptake and efficient siRNA delivery

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ulbrich W, Lamprecht A (2010) J R Soc Interface 7:55–66

    Article  Google Scholar 

  2. Green JJ, Zhou BY, Mitalipova MM, Beard C, Langer R, Jaenisch R (2008) Nano Lett 8:3126–3130

    Article  CAS  Google Scholar 

  3. Allouche J, Boissiere M, Helary C, Livage J, Coradin T (2006) J Mater Chem 16:3120–3125

    Article  CAS  Google Scholar 

  4. Yu YY, Chen CY, Chen WC (2003) Polymer 44:593–601

    Article  CAS  Google Scholar 

  5. Borrego T, Andrade M, Pinto ML, Silva AR, Carvalho AP, Rocha J, Cristina F, Joao P (2010) J Colloid Interf Sci 344:603–610

    Article  CAS  Google Scholar 

  6. Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T (2005) J Control Release 109:299–316

    Article  CAS  Google Scholar 

  7. Burke RS, Pun SH (2008) Bioconjugate Chem 19:693–704

    Article  CAS  Google Scholar 

  8. Ashtari P, He X, Wang K, Gong P (2005) Talanta 67:548–554

    Article  CAS  Google Scholar 

  9. Jere D, Jiang HL, Arote R, Kim YK, Choi YJ, Cho MH, Akaike T, Cho CS (2009) Expert Opin Drug Deliv 6:827–834

    Article  CAS  Google Scholar 

  10. Fuller JE, Zugates GT, Ferreira LS, Ow HS, Nguyen NN, Wiesner UB, Robert SL (2008) Biomaterials 29:1526–1532

    Article  CAS  Google Scholar 

  11. Choi SJ, Oh JM, Choy JH (2009) J Inorg Biochem 103:463–471

    Article  CAS  Google Scholar 

  12. Wang H, Yang R, Yang L, Tan W (2009) ACS Nano 3:2451–2460

    Article  CAS  Google Scholar 

  13. Elbakry A, Zaky A, Liebl R, Rachel R, Goepferich A, Breunig M (2009) Nano Lett 9:2059–2064

    Article  CAS  Google Scholar 

  14. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Proc Natl Acad Sci USA 104:15549–15554

    Article  CAS  Google Scholar 

  15. Merkel OM, Livrizzi D, Pfestroff A, Schurrat T, Behe M, Kissel T (2009) Bioconjugate Chem 20:174–182

    Article  CAS  Google Scholar 

  16. Christensen LV, Chang CW, Yockman JW, Conners R, Jackson H, Zhong Z, Jan F, David AB, Sung WK (2007) J Control Release 118:254–261

    Article  CAS  Google Scholar 

  17. Meade BR, Dowdy SF (2008) Adv Drug Deliv Rev 60:530–536

    Article  CAS  Google Scholar 

  18. Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK (2005) Angew Chem Int Ed 44:1068–1071

    Article  CAS  Google Scholar 

  19. Bartlett DW, Davis ME (2008) Biotechnol Bioeng 99:975–985

    Article  CAS  Google Scholar 

  20. Akhtar S, Benter IF (2007) J Clin Invest 117:3623–3632

    Article  CAS  Google Scholar 

  21. Davis ME (2009) Mol Pharmaceut 6:659–668

    Article  CAS  Google Scholar 

  22. Lipski AM, Pino CJ, Haselton FR, Chen IW, Shastri VP (2008) Biomaterials 29:3836–3846

    Article  CAS  Google Scholar 

  23. Xu Y, Li Q (2007) Clin Chem 53:1503–1510

    Article  CAS  Google Scholar 

  24. Feng L, Wang Y, Wang N, Ma Y (2009) Polym Bull 63:313–327

    Article  CAS  Google Scholar 

  25. Joubert M, Delaite C, Bourgeat-Lami B, Dumas P (2005) Macromol Rapid Commun 26:602–607

    Article  CAS  Google Scholar 

  26. Estévez MC, O’donoghue MB, Chen X, Tan W (2009) Nano Res 2:448–461

    Article  Google Scholar 

  27. Graf C, Vossen DLJ, Imhof A, Blaaderen AV (2003) Langmuir 19:6693–6700

    Article  CAS  Google Scholar 

  28. An Y, Chen M, Xue Q, Liu W (2007) J Colloid Interf Sci 311:507–513

    Article  CAS  Google Scholar 

  29. Park KM, Kang HC, Cho JK, Chung IJ, Cho SH, Bae YH, Kun N (2009) Biomaterials 30:2642–2652

    Article  CAS  Google Scholar 

  30. Salon MC, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem MN (2007) Magn Reson Chem 45:473–483

    Article  CAS  Google Scholar 

  31. Brannon-Peppas L, Blanchette JO (2004) Adv Drug Deliv Rev 56:1649–1659

    Article  CAS  Google Scholar 

  32. Kobayashi S, Nakase I, Kawabata N, Yu HH, Pujals S, Imanishi M, Ernest G, Shiroh F (2009) Bioconjugate Chem 20:953–959

    Article  CAS  Google Scholar 

  33. Lessard-Viger M, Rioux M, Rainville L, Boudreau D (2009) Nano Lett 9(8):3066–3071

    Article  CAS  Google Scholar 

  34. Mijatovic WH, Binder HG (2000) Mikrochim Acta 133:175–181

    Article  CAS  Google Scholar 

  35. Takayama K, Tadokoro A, Pujals S, Nakase I, Giralt E, Futaki S (2009) Bioconjugate Chem 20:249–257

    Article  CAS  Google Scholar 

  36. Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Thomas K (2006) Bioconjugate Chem 17:1209–1218

    Article  CAS  Google Scholar 

  37. Petersen H, Petra MF, Dagmar F, Thomas K (2002) Macromolecules 35:6867–6874

    Article  CAS  Google Scholar 

  38. Nguyen HK, Lemieux P, Vinogradov SV, Gebhart CL, Guérin L, Paradis G, Bronich TK, Alakhov VY, Kabanov AV (2000) Gene Ther 7:126–138

    Article  CAS  Google Scholar 

  39. Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM (2005) Proc Natl Acad Sci U S A 102:5679–5684

    Article  CAS  Google Scholar 

  40. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A (2005) Gene Ther 12:461–466

    Article  CAS  Google Scholar 

  41. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) ACS Nano 2:889–896

    Article  CAS  Google Scholar 

  42. Brus C, Petersen H, Aigner A, Czubayko F, Kissel T (2004) Bioconjugate Chem 15:677–684

    Article  CAS  Google Scholar 

  43. Merdan T, Callahan J, Petersen H, Kunath K, Bakowsky U, Kopecková P, Thomas K, Jindřich K (2003) Bioconjugate Chem 14:989–996

    Article  CAS  Google Scholar 

  44. Brus C, Petersen H, Aigner A, Czubayko F, Kissel T (2004) Eur J Pharm Biopharm 57:427–430

    Article  CAS  Google Scholar 

  45. Glodde M, Sirsi SR, Lutz GJ (2006) Biomacromolecules 7:347–356

    Article  CAS  Google Scholar 

  46. Forrest ML, Meister GE, Koerber JT, Pack DW (2004) Pharm Res 21:365–371

    Article  CAS  Google Scholar 

  47. Thomas M, Klibanov AM (2002) Proc Natl Acad Sci U S A 99:14640–14645

    Article  CAS  Google Scholar 

  48. Doody AM, Korley JN, Dang KP, Zawaneh PN, Putnam D (2006) J Control Release 116:227–237

    Article  CAS  Google Scholar 

  49. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, Dagmar F, Martyn CD, Thomas K (2002) Bioconjugate Chem 13:845–854

    Article  CAS  Google Scholar 

  50. Kunath K, von Harpe A, Petersen H, Fischer D, Voigt K, Kissel T, Ulrich B (2002) Pharm Res 19:810–817

    Article  CAS  Google Scholar 

  51. Neu M, Fischer D, Kissel T (2005) J Gene Med 7:992–1009

    Article  CAS  Google Scholar 

  52. Duan H, Nie S (2007) J Am Chem Soc 129:3333–3338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Ministry of Health and Welfare (A040041) and Samsung Biomedical Research Institute, Republic of Korea (PB00021). We thank Ms. Yunhee Kim for solid NMR spectroscopic analysis in NICEM, SNU, and Ms. Youngshin Yoo for HR-TEM analysis in SKKU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyusik Yun or Soo-Won Seo.

Additional information

H. Lee and D. Sung contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Sung, D., Veerapandian, M. et al. PEGylated polyethyleneimine grafted silica nanoparticles: enhanced cellular uptake and efficient siRNA delivery. Anal Bioanal Chem 400, 535–545 (2011). https://doi.org/10.1007/s00216-011-4770-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4770-4

Keywords

Navigation