Skip to main content
Log in

Patterned growth of vertically aligned silicon nanowire arrays for label-free DNA detection using surface-enhanced Raman spectroscopy

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Patterning is of paramount importance in many areas of modern science and technology. As a good candidate for novel nanoscale optoelectronics and miniaturized molecule sensors, vertically aligned silicon nanowire (SiNW) with controllable location and orientation is highly desirable. In this study, we developed an effective procedure for the fabrication of vertically aligned SiNW arrays with micro-sized features by using single-step photolithography and silver nanoparticle-induced chemical etching at room temperature. We demonstrated that the vertically aligned SiNW arrays can be used as a platform for label-free DNA detection using surface-enhanced Raman spectroscopy (SERS), where the inherent “fingerprint” SERS spectra allows for the differentiation of closely related biospecies. Since the SiNW array patterns could be modified by simply varying the mask used in the photolithographic processing, it is expected that the methodology can be used to fabricate label-free DNA microarrays and may be applicable to tissue engineering, which aims to create living tissue substitutes from cells seeded onto 3D scaffolds.

Schematic illustration of fabrication procedures of SiNWs patterns

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geissler M, Xia YN (2004) Adv Mater 16:1249–1269

    Article  CAS  Google Scholar 

  2. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897–1899

    Article  CAS  Google Scholar 

  3. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang PD (2007) J Am Chem Soc 129:7228–7229

    Article  CAS  Google Scholar 

  4. Qi SJ, Yi CQ, Chen WW, Fong CC, Lee ST, Yang MS (2007) Chembiochem 8:1115–1118

    Article  CAS  Google Scholar 

  5. Yi CQ, Fong CC, Chen WW, Qi SJ, Lee ST, Yang MS (2007) Nanotechnology 18:025102

    Article  Google Scholar 

  6. Muck A, Stelzner T, Hübner U, Christiansen S, Svatoš A (2010) Lab Chip 10:320–325

    Article  CAS  Google Scholar 

  7. Huang Y, Duan XF, Wei Q, Lieber CM (2001) Science 291:630–633

    Article  CAS  Google Scholar 

  8. Rao SG, Huang L, Setyawan W, Hong S (2003) Nature 425:36–37

    Article  CAS  Google Scholar 

  9. Chan YH, Chen JX, Wark SE, Skiles SL, Son DH, Batteas JD (2009) ACS Nano 3:1735–1744

    Article  CAS  Google Scholar 

  10. Wang X, Summers CJ, Wang ZL (2004) Nano Lett 4:423–426

    Article  CAS  Google Scholar 

  11. Wang DW, Tu R, Zhang L, Dai HJ (2005) Angew Chem Int Ed 44:2925–2929

    Article  CAS  Google Scholar 

  12. Kayastha VK, Yap YK, Pan Z, Ivanov IN, Puretzky AA, Geohegan DB (2005) Appl Phys Lett 86:253106

    Article  Google Scholar 

  13. Saib A, Vanhoenacker-Janvier D, Huynen I, Encinas A, Piraux L, Ferain E, Legras R (2003) Appl Phys Lett 83:2378–2380

    Article  CAS  Google Scholar 

  14. Wilbur JL, Kim E, Xia YN, Whitesides GM (1995) Adv Mater 7:649–652

    Article  CAS  Google Scholar 

  15. Li CW, Cheung CN, Yang J, Tzang CH, Yang MS (2003) Analyst 128:1137–1142

    Article  CAS  Google Scholar 

  16. Li CW, Chen RS, Yang MS (2007) Lab Chip 7:1371–1373

    Article  CAS  Google Scholar 

  17. Li CW, Yang J, Yang MS (2006) Lab Chip 6:921–929

    Article  Google Scholar 

  18. Li F, Zhu M, Liu CG, Zhou WL, Wiley JB (2006) J Am Chem Soc 128:13342–13343

    Article  CAS  Google Scholar 

  19. Xu QB, Tonks I, Fuerstman MJ, Love JC, Whitesides GM (2004) Nano Lett 4:2509–2511

    Article  CAS  Google Scholar 

  20. Yang YA, Taggart DK, Brown MA, Xiang CX, Kung SC, Yang F, Hemminger JC, Penner RM (2009) ACS Nano 3:4144–4154

    Article  CAS  Google Scholar 

  21. Peng HI, Strohsahl CM, Leach KE, Krauss TD, Miller BL (2009) ACS Nano 3:2265–2273

    Article  CAS  Google Scholar 

  22. Nie SM, Emery SR (1997) Science 275:1102–1106

    Article  CAS  Google Scholar 

  23. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957–2976

    Article  CAS  Google Scholar 

  24. Hudson SD, Chumanov G (2009) Anal Bioanal Chem 394:679–686

    Article  CAS  Google Scholar 

  25. Cerf A, Molnar G, Vieu C (2009) ACS Applied Materials & Interfaces 1:2544–2550

    Article  CAS  Google Scholar 

  26. Ni J, Lipert RJ, Dawson GB, Porter MD (1999) Anal Chem 71:4903–4908

    Article  CAS  Google Scholar 

  27. Krug JT, Wang GD, Emory SR, Nie SM (1999) J Am Chem Soc 121:9208–9214

    Article  CAS  Google Scholar 

  28. Lutz BR, Dentinger CE, Nguyen LN, Sun L, Zhang JW, Allen AN, Chan S, Knudsen BS (2008) ACS Nano 2:2306–2314

    Article  CAS  Google Scholar 

  29. Pieczonka NPW, Aroca RF (2005) Chemphyschem 6:2473–2484

    Article  CAS  Google Scholar 

  30. Leng WN, Yasseri AA, Sharma S, Li ZY, Woo HY, Vak D, Bazan GC, Kelley AM (2006) Anal Chem 78:6279–6282

    Article  CAS  Google Scholar 

  31. Galopin E, Barbillat J, Coffinier Y, Szunerits S, Patriarche G, Boukherroub R (2009) ACS Applied Materials & Interfaces 1:1396–1403

    Article  CAS  Google Scholar 

  32. Shao MW, Zhang ML, Wong NB, Ma DDD, Wang H, Chen WW, Lee ST (2008) Appl Phys Lett 93:233118

    Article  Google Scholar 

  33. Zhang ML, Yi CQ, Fan X, Peng KQ, Zhang RQ, Yang MS, Lee ST (2008) Appl Phys Lett 92:043116

    Article  Google Scholar 

  34. Wang XT, Shi WS, She GW, Mu LX, Lee ST (2010) Appl Phys Lett 96:053104

    Article  Google Scholar 

  35. Zhang ML, Fan X, Zhou HW, Shao MW, Zapien JA, Wong NB, Lee ST (2010) J Phys Chem C 114:1969–1975

    Article  CAS  Google Scholar 

  36. Peng KQ, Fang H, Hu JJ, Wu Y, Zhu J, Yan YJ, Lee ST (2006) Chem Eur J 12:7942–7946

    Article  CAS  Google Scholar 

  37. Zhang ML, Peng KQ, Fan X, Jie JS, Zhang RQ, Lee ST, Wong NB (2008) J Phys Chem C 112:4444–4450

    Article  CAS  Google Scholar 

  38. Qi SJ, Yi CQ, Fong CC, Ji SL, Yang MS (2009) ACS Applied Materials & Interfaces 1:30–34

    Article  CAS  Google Scholar 

  39. Yao Y, Li FH, Lee ST (2005) Chem Phys Lett 406:381–385

    Article  CAS  Google Scholar 

  40. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  41. Fliss MS, Usadel H, Cabellero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D (2000) Science 287:2017–2019

    Article  CAS  Google Scholar 

  42. Fritzsche W, Taton TA (2003) Nanotechnology 14:R63–R73

    Article  CAS  Google Scholar 

  43. Futreal PA, Kasprzyk A, Birney E, Mullikin JC, Wooster R, Stratton MR (2001) Nature 409:850–852

    Article  CAS  Google Scholar 

  44. Lee SA, Anderson A, Smith W, Griffey RH, Mohan V (2000) J Raman Spectrosc 31:891–896

    Article  CAS  Google Scholar 

  45. Dong LQ, Zhou JZ, Wu LL, Dong P, Lin ZH (2002) Chem Phys Lett 354:458–465

    Article  CAS  Google Scholar 

  46. Turpin PY, Chinsky L, Laigle A, Jolles B (1989) J Mol Struct 214:43–70

    Article  CAS  Google Scholar 

  47. Abdelsalam ME, Mahajan S, Bartlett PN, Baumberg JJ, Russell AE (2007) J Am Chem Soc 129:7399–7406

    Article  CAS  Google Scholar 

  48. Zhang BH, Wang HS, Lu LH, Ai KL, Zhang G, Cheng XL (2008) Adv Funct Mater 18:2348–2355

    Article  CAS  Google Scholar 

  49. Vitol EA, Orynbayeva Z, Bouchard MJ, Azizkhan-Clifford J, Friedman G, Gogotsi Y (2009) ACS Nano 3:3529–3536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of Key Laboratory Funding Scheme of Shenzhen Municipal Government, Shenzhen Double 100 Science, and Technology Project and the Innovation and Technology Fund (Project No. ITS/353/09) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengsu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, C., Li, CW., Fu, H. et al. Patterned growth of vertically aligned silicon nanowire arrays for label-free DNA detection using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 397, 3143–3150 (2010). https://doi.org/10.1007/s00216-010-3889-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3889-z

Keywords

Navigation