Skip to main content
Log in

New opportunities in multiplexed optical bioanalyses using quantum dots and donor–acceptor interactions

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review highlights recent trends in the development of multiplexed bioanalyses using quantum dot bioconjugates and donor–acceptor interactions. In these methods, multiple optical signals are generated in response to biorecognition through modulation of the photoluminescence of populations of quantum dots with different emission colors. The donoracceptor interactions that have been used include fluorescence resonance energy transfer, bioluminescence resonance energy transfer, charge transfer quenching, and quenching via proximal gold nanoparticles. Assays for the simultaneous detection of between two and eight target analytes have been developed, where spectral deconvolution is an important tool. Target analytes have included small molecules, nucleic acid sequences, and proteases. The unique optical properties of quantum dots offer several potential advantages in multiplexed detection, and a large degree of versatility, for example, one pot multiplexing at the ensemble level, where only wavelength discrimination is required to differentiate between detection channels. These methods are not being developed to compete with array-based technologies in terms of overall multiplexing capacity, but rather to enable new formats for multiplexed bioanalyses. In particular, quantum dot bioprobes based on donor–acceptor interactions are anticipated to provide future opportunities for multiplexed biosensing within living cells.

Figure

Multicolor optical bioanalyses using donor-acceptor interactions between quantum dots and gold nanoparticles, fluorescent dyes, or redox active complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. QDs have also been used as electroactive labels for multiplexed anodic stripping voltammetry [5]; however, discussion of this is beyond the scope of this review.

  2. Photoluminescence quenching by Au NPs has been primarily associated with dipole–surface interactions that have an inverse fourth power (r −4) distance dependence [16, 17], and also with changes in radiative rate induced by the Au NPs [18, 19]. These details are beyond the scope of this review, and the interested reader is referred to the cited references for more information.

References

  1. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544

    Article  CAS  Google Scholar 

  2. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  3. Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Curr Opin Biotechnol 13:40–46

    Article  CAS  Google Scholar 

  4. Lee JA, Mardyani S, Hung A, Rhee A, Klostranec J, Mu Y, Li D, Chan WCW (2007) Adv Mater 19:3113–3118

    Article  CAS  Google Scholar 

  5. Kim JH, Seo KS, Wang J (2006) IEEE Sens J 6:248–253

    Article  CAS  Google Scholar 

  6. Wilson R, Cossins AR, Spiller DG (2006) Angew Chem Int Ed 45:6104–6117

    Article  CAS  Google Scholar 

  7. Bentolila LA, Weiss A (2006) Cell Biochem Biophys 45:59–70

    Article  CAS  Google Scholar 

  8. Tholouli E, Hoyland JA, Di Vizio D, O’Connell F, MacDermott SA, Twomey D, Levenson R, Liu Yin JA, Golub TR, Loda M, Byers R (2006) Biochem Biophys Res Commun 348:628–636

    Article  CAS  Google Scholar 

  9. Chan PM, Yuen T, Ruf F, Gonzalez-Maeso J, Sealfon SC (2005) Nucleic Acids Res 33:e161

    Article  Google Scholar 

  10. Nie S, Xing Y, Kim GJ, Simons JW (2007) Annu Rev Biomed Eng 9:257–288

    Article  CAS  Google Scholar 

  11. Smith AM, Duan H, Mohs AM, Nie S (2008) Adv Drug Del Rev 60:1226–1240

    Article  CAS  Google Scholar 

  12. Algar WR, Krull UJ (2008) Anal Bioanal Chem 391:1609–1618

    Article  CAS  Google Scholar 

  13. Medintz IL, Mattoussi H (2009) Phys Chem Chem Phys 11:17–45

    Article  CAS  Google Scholar 

  14. Algar WR, Tavares AJ, Krull UJ (2010) Anal Chim Acta (in press)

  15. Xia ZY, Rao JH (2009) Curr Opin Biotechnol 20:37–44

    Article  CAS  Google Scholar 

  16. Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2005) J Am Chem Soc 127:3115–3119

    Article  CAS  Google Scholar 

  17. Li X, Qian J, Jiang L, He S (2009) Appl Phys Lett 94:063111

    Article  Google Scholar 

  18. Dulkeith E, Ringler M, Klar TA, Feldmann J, Muñoz Javier A, Parak WJ (2005) Nano Lett 5:585–589

    Article  CAS  Google Scholar 

  19. Schneider G, Decher G, Nerambourg N, Praho R, Werts MHV, Blanchard-Desce M (2006) Nano Lett 6:530–536

    Article  CAS  Google Scholar 

  20. Pons T, Medintz IL, Sapsford KE, Higashiya S, Grimes AF, English DS, Mattoussi H (2007) Nano Lett 7:3157–3154

    Article  CAS  Google Scholar 

  21. Pan B, Cui D, Ozkan CS, Ozkan M, Xu P, Huang T, Liu F, Chen H, Li Q, He R, Gao F (2008) J Phys Chem C 112:939–944

    Article  CAS  Google Scholar 

  22. Medintz IL, Farrell D, Susumu K, Trammell SA, Deschamps JR, Brunel FM, Dawson PE, Mattoussi H (2009) Anal Chem 81:4831–4839

    Article  CAS  Google Scholar 

  23. Sandros MG, Shete V, Benson DE (2006) Analyst 131:229–235

    Article  CAS  Google Scholar 

  24. Swain MD, Octain J, Benson DE (2008) Bioconjug Chem 19:2520–2526

    Article  CAS  Google Scholar 

  25. Bailey VJ, Easwaran H, Zhang Y, Griffiths E, Belinsky SA, Herman JG, Baylin SB, Carraway HE, Wang TH (2009) Genome Res 19:1455–1461

    Article  CAS  Google Scholar 

  26. Algar WR, Krull UJ (2007) Anal Chim Acta 581:193–201

    Article  CAS  Google Scholar 

  27. Algar WR, Krull UJ (2009) Anal Chem 81:4113–4120

    Article  CAS  Google Scholar 

  28. Algar WR, Krull UJ (2010) Anal Chem 82:400–405

    Article  CAS  Google Scholar 

  29. Algar WR, Krull UJ (2010) Langmuir 26:6041–6047

    Article  CAS  Google Scholar 

  30. Algar WR, Krull UJ (2010) In: Alexandrou A, Cheon J, Mattoussi H, Rotello V (eds) Biological imaging and sensing using nanoparticle assemblies. symposium proceedings, vol 1241E. Materials Research Society, Warrendale, paper no 1241-XX09-04

  31. Tang B, Cao L, Xu K, Zhuo L, Ge J, Li Q, Yu L (2008) Chem Eur J 14:3637–3644

    Article  CAS  Google Scholar 

  32. Cady NC, Strickland AD, Batt CA (2007) Mol Cell Probes 21:116–124

    Article  CAS  Google Scholar 

  33. Chang E, Miller JS, Sun JT, Yu WW, Colvin VL, Drezek R, West KL (2005) Biochem Biophys Res Commun 334:1317–1321

    Article  CAS  Google Scholar 

  34. Liu J, Lee JH, Lu Y (2007) Anal Chem 79:4120–4125

    Article  CAS  Google Scholar 

  35. Kim YP, Oh YH, Oh E, Ko S, Han MK, Kim HS (2008) Anal Chem 80:4634–4641

    Article  CAS  Google Scholar 

  36. Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) J Am Chem Soc 127:1242–1250

    Article  CAS  Google Scholar 

  37. So MK, Xu C, Loening AM, Gambhir SS, Rao J (2006) Nat Biotechnol 24:339–343

    Article  CAS  Google Scholar 

  38. Xia Z, Xing Y, So MK, Koh AL, Sinclair R, Rao J (2008) Anal Chem 80:8649–8655

    Article  CAS  Google Scholar 

  39. Allen PM, Bawendi M (2008) J Am Chem Soc 130:9240–9241

    Article  CAS  Google Scholar 

  40. Allen PM, Liu W, Chauhan VP, Lee J, Ting AY, Fukumura D, Jain RK, Bawendi MG (2010) J Am Chem Soc 132:470–471

    Article  CAS  Google Scholar 

  41. Jiang W, Singhal A, Zheng J, Wang C, Chan WCW (2006) Chem Mater 18:4845–4854

    Article  CAS  Google Scholar 

  42. Medintz IL, Pons T, Trammell SA, Grimes AF, English DS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2008) J Am Chem Soc 130:16745–16756

    Article  CAS  Google Scholar 

  43. Pons T, Medintz IL, Sykora M, Mattoussi H (2006) Phys Rev B 73:245302

    Article  Google Scholar 

  44. Xu H, Sha MY, Wong EY, Uphoff J, Xu Y, Treadway JA, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr NK, Lai EH, Mahoney W (2003) Nucleic Acids Res 31:e43

    Article  Google Scholar 

  45. Han M, Gao X, Su JZ, Nie S (2001) Nat Biotechnol 19:631–635

    Article  CAS  Google Scholar 

  46. Fournier-Bidoz S, Jennings TL, Klostranec JM, Fung W, Rhee A, Li D, Chan WCW (2008) Angew Chem Int Ed 47:5577–5581

    Article  CAS  Google Scholar 

  47. Eastman PS, Ruan W, Doctolero M, Nuttall R, de Feo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FF (2006) Nano Lett 6:1059–1064

    Article  CAS  Google Scholar 

  48. Hohng S, Ha T (2005) Chem Phys Chem 6:956–960

    CAS  Google Scholar 

  49. Pons T, Medintz IL, Wang X, English DS, Mattoussi H (2006) J Am Chem Soc 128:15324–15331

    Article  CAS  Google Scholar 

  50. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Nat Mater 4:826–831

    Article  Google Scholar 

  51. Zhang CY, Johnson LW (2009) Anal Chem 81:3051–3055

    Article  CAS  Google Scholar 

  52. Klostranec JM, Xiang Q, Farcas GA, Lee JA, Rhee A, Lafferty EI, Perrault SD, Kain KC, Chan WCW (2007) Nano Lett 7:2812–2818

    Article  CAS  Google Scholar 

  53. Delehanty JB, Mattoussi H, Medintz IL (2009) Anal Bioanal Chem 393:1091–1105

    Article  CAS  Google Scholar 

  54. Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, Mattoussi H (2006) Bioconjug Chem 17:920–927

    Article  CAS  Google Scholar 

  55. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO (2008) Chem Biol 15:375–382

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding their research program. W.R.A. is also grateful to the University of Toronto and the Ontario Ministry of Education and Training for a graduate fellowship (OGSST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich J. Krull.

Additional information

Published in the special issue on Focus on Bioanalysis with Guest Editors Antje J. Baeumner, Günter Gauglitz, Frieder W. Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algar, W.R., Krull, U.J. New opportunities in multiplexed optical bioanalyses using quantum dots and donor–acceptor interactions. Anal Bioanal Chem 398, 2439–2449 (2010). https://doi.org/10.1007/s00216-010-3837-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3837-y

Keywords

Navigation