Skip to main content
Log in

New methods for nanotoxicology: synchrotron radiation-based techniques

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanotoxicology, a new branch of bionanoscience, deals with the study and application of the toxic or biological effects of nanomaterials or nanostructures, and aims to fill gaps in our knowledge of interactions between nano- and biosystems. However, progress in this new discipline largely relies on developing methodology to characterize nanomaterials in biological samples, quantify nanoparticles in living systems, and study their uptake, translocation, biodistribution, location and chemical status in vitro and in vivo, etc. In this review article, we focus on the main features of synchrotron radiation-based methods and their application to the study of the toxicological activities of nanomaterials. Synchrotron radiation-based analytical techniques are shown to provide a potent means for characterizing the toxic or biological behaviors of nanoparticles in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  Google Scholar 

  2. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    Article  CAS  Google Scholar 

  3. Asharani PV, Wu YL, Gong ZY, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102–255109

    Article  Google Scholar 

  4. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  CAS  Google Scholar 

  5. Russo RE, Mao XL, Liu HC, Gonzalez J, Mao SS (2002) Laser ablation in analytical chemistry—a review. Talanta 57:425–451

    Google Scholar 

  6. Ortega R, Devès G, Carmona A (2009) Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy. J R Soc Interface 6:S649–S658

    Article  CAS  Google Scholar 

  7. Tsuji K, Nakano K, Hayashi H, Hayashi K, Ro CU (2008) X-ray spectrometry. Anal Chem 80:4421–4454

    Article  CAS  Google Scholar 

  8. Bertsch PM, Hunter DB (2001) Applications of synchrotron-based X-ray microprobes. Chem Rev 101:1809–1842

    Article  CAS  Google Scholar 

  9. Gekko K, Yonehara R, Sakurada Y, Matsuo K (2005) Structure analyses of biomolecules using a synchrotron radiation circular dichroism spectrophotometer. J Electron Spectrosc Relat Phenom 144–147:295–297

    Article  Google Scholar 

  10. Potts PJ, Ellis AT, Holmes M, Kregsamer P, Streli C, West M, Wobrauschek P (2000) X-ray fluorescence spectrometry. J Anal At Spectrom 15:1417–1442

    Article  CAS  Google Scholar 

  11. Tsiji K, Injuk J, Grieken RV (2004) X-ray spectrometry: recent technological advances. Wiley, Chichester

  12. Rao CNR, Biswas K (2009) Characterization of nanomaterials by physical methods. Annu Rev Anal Chem 2:425–462

    Article  Google Scholar 

  13. Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, Jia G, Gao YX, Li B, Sun J, Li YF, Jiao F, Zhao YL, Chai ZF (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185

    Article  CAS  Google Scholar 

  14. Matsuyama S, Mimura H, Yumoto H, Sano Y, Yamamura K, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K (2006) Development of scanning x-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick–Baez mirror optics. Rev Sci Instrum 77:103102–103106

    Google Scholar 

  15. Schroer CG, Kuhlmann M, Hunger UT, Gunzler TF, Kurapova O, Feste S, Frehse F, Lengeler B, Drakopoulos M, Somogyi A, Simionovici AS, Snigirev A, Snigireva I, Schug C, Schroder WH (2003) Nanofocusing parabolic refractive X-ray lenses. Appl Phys Lett 82:1485–1487

    Google Scholar 

  16. Rau C, Crecea V, Liu W, Richter CP, Peterson KM, Jemian PR, Neuhäusler U, Schneider G, Yu X, Braun PV, Chiang TC, Robinson IK (2007) Synchrotron-based imaging and tomography with hard X-rays. Nucl Instrum Meth B 261:850–854

    Article  CAS  Google Scholar 

  17. Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Zhao YL, Chai ZF, Huang YY, Xie YN, Wang HF, Wang J (2007) Transportation of intranasal instillation of fine Fe2O3 particles in brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118:233–243

    Article  CAS  Google Scholar 

  18. Wang JX, Chen CY, Yu HW, Sun J, Li B, Li YF, Gao YX, Chai ZF, He W, Huang YY, Zhao YL (2007) Distribution of TiO2 particles in the olfactory bulb of mice after nasal inhalation using microbeam SRXRF mapping techniques. J Radioanal Nucl Chem 272:527–531

    Article  CAS  Google Scholar 

  19. Gao YX, Liu NQ, Chen CY, Luo YF, Li YF, Zhang ZY, Zhao YL, Zhao BL, Iida A, Chai ZF (2008) Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal At Spectrom 23:1121–1124

    Google Scholar 

  20. Jackson BP, Pace HE (2009) Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna. Anal Bioanal Chem 394:911–917

    Google Scholar 

  21. Kemner KM, Kelly SD, Lai B, Maser J, O’Loughlin EJ, Sholto-Douglas D, Cai Z, Schneegurt MA, Kulpa CF, Nealson KH Jr (2004) Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 306:686–687

    Article  CAS  Google Scholar 

  22. Yang LC, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc Natl Acad Sci 102:11179–11184

    Article  CAS  Google Scholar 

  23. Chen KG, Valencia JC, Lai B, Zhang GF, Paterson JK, Rouzaud F, Berens W, Wincovitch SM, Garfield SH, Leapman RD, Hearing VJ, Gottesman MM (2006) Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci USA 103:9903–9907

    Google Scholar 

  24. Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, Legnini D, Maser J, Ikpatt F, Olopade OI, Glesne D (2007) X-ray fluorescence microscopy reveals largescale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci USA 104:2247–2252

    Google Scholar 

  25. Paunesku T, Vogt S, Lai B, Maser J, Stojicevic N, Thurn KT, Osipo C, Legnini D, Wang Z, Lee C, Woloshak G (2007) Intracellular distribution of TiO2–DNA oligonucleotide nanoconjugates directed to nucleus and mitochondria indicates sequence specificity. Nano Lett 7:596–601

    Article  CAS  Google Scholar 

  26. Chen Z, Chen H, Meng H, Xing GM, Gao XY, Sun BY, Shi XL, Yuan H, Zhang CC, Liu R, Zhao F, Zhao YL, Fang XH (2008) Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharm 230:364–371

    Article  CAS  Google Scholar 

  27. Petibois C, Guidi MC (2008) Bioimaging of cells and tissues using accelerator-based sources. Anal Bioanal Chem 391:1599–1608

    Article  CAS  Google Scholar 

  28. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi HB, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  29. Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao YL, Chai ZF (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247:102–111

    Article  CAS  Google Scholar 

  30. Auffan M, Achouak W, Rose J, Roncato MA, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Google Scholar 

  31. Auffan M, Rose J, Orsiere T, De Meo M, Thill A, Zeyons O, Proux O, Masion A, Chaurand P, Spalla O, Botta A, Wiesner MR, Bottero JY (2009) CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3:161–171

    Article  CAS  Google Scholar 

  32. Sun HW, Zhang XZ, Niu Q, Chen YS, Crittenden JC (2007) Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut 178:245–254

    Google Scholar 

  33. Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC (2007) Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–166

    Article  CAS  Google Scholar 

  34. Scheckel KG, Luxton TP, El Badawy AM, Impellitteri CA, Tolaymat TM (2010) Synchrotron speciation of silver and zinc oxide nanoparticles aged in a Kaolin suspension. Environ Sci Technol 44:1307–1312

    Article  CAS  Google Scholar 

  35. Duan YM, Liu HT, Zhao JF, Liu C, Li ZR, Yan JY, Ma LL, Liu J, Xie YN, Ruan J, Hong FH (2009) The effects of nano-anatase TiO2 on the activation of lactate dehydrogenase from rat heart. Biol Trace Elem Res 130:162–171

    Article  CAS  Google Scholar 

  36. Zhong J, Song L, Meng J, Gao B, Chu WS, Xu HY, Luo Y, Guo JH, Marcelli A, Xie SS, Wu ZY (2009) Bio–nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 209:967–973

    Article  Google Scholar 

  37. Li N, Ma LL, Wang J, Zheng L, Liu J, Duan YM, Liu HT, Zhao XY, Wang SS, Wang H, Hong FS, Xie YN (2010) Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 5:108–115

    Article  CAS  Google Scholar 

  38. Wallace BA, Janes RW (2003) Circular dichroism and synchrotron radiation circular dichroism spectroscopy: tools for drug discovery. Biochem Soc Trans 31:631–633

    Article  CAS  Google Scholar 

  39. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Foundations of the MOST 973 program (2006CB705605, 2009CB930204), the CAS Knowledge Innovation Program (KJCX3.SYW.N3), and the National Natural Science Foundation of China (10975148, 10905064 and 20805048), and 973 program 2010CB933904.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyue Feng or Yuliang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Wang, Z., Feng, W. et al. New methods for nanotoxicology: synchrotron radiation-based techniques. Anal Bioanal Chem 398, 667–676 (2010). https://doi.org/10.1007/s00216-010-3752-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3752-2

Keywords

Navigation