Skip to main content
Log in

Composition study of CoPt bimetallic nanocrystals of 2 nm

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of bimetallic alloy nanocrystals with a well-controlled relative composition is a real challenge and requires chemical analysis techniques with high accuracy. A new chemical route has been used to synthesize cobalt–platinum nanocrystals of 2-nm diameter in a wide range of relative stoichiometry. A study of the elemental composition of the nanoalloy was carried out by X-ray fluorescence (XRF) spectroscopy and energy-dispersive X-ray analysis. We have developed a set-up for XRF analysis using a silicon wafer as a support to determine the elemental composition with only a small amount of sample. The calibration step and the measurement capabilities are described. In a composition range of 25–75% cobalt, the results of both analytical methods are discussed and compared in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grundy PJ (1998) J Phys D Appl Phys 31:2975

    Article  CAS  Google Scholar 

  2. Sandhu A (2007) Nat Nanotechnol 2:746–748

    Article  CAS  Google Scholar 

  3. Snytnikov PV, Yusenko KV, Korenev SV, Shubin YV, Sobyanin VA (2007) Kinet Catal 48(2):276–281

    Article  CAS  Google Scholar 

  4. Demortière A, Launois P, Goubet N, Albouy PA, Petit C (2008) J Phys Chem B 112(46):14583–14592

    Article  Google Scholar 

  5. Wilcoxon J (2009) J Phys Chem B 113:2647–2656

    Article  CAS  Google Scholar 

  6. Weller D, Moser A (1999) IEEE Trans Mag 35(6):4423

    Article  CAS  Google Scholar 

  7. Sun X, Jia ZY, Huang YH, Harrel JW, Nikles DE, Sun K, Wang LM (2004) J Appl Phys 95:6747

    Article  CAS  Google Scholar 

  8. Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I (2007) Chem Mater 19:2389–2391

    Article  CAS  Google Scholar 

  9. Kim JH, Kim J, Oh N, Kim YH, Kim CK, Yoon CS, Jin S (2007) Appl Phys Lett 90:023117

    Article  Google Scholar 

  10. Kim J, Rong C, Lee Y, Liu JP, Sun S (2008) Chem Mater 20(23):7242–7245

    Article  CAS  Google Scholar 

  11. Valcárcel M, Simonet BM, Cárdenas S (2008) Anal Bioanal Chem 391:1881–1887

    Article  Google Scholar 

  12. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108(3):847

    Article  Google Scholar 

  13. Sanchez SI, Small MW, Zuo JM, Nuzzo RG (2009) J Am Chem Soc 131(24):8683–8689

    Article  CAS  Google Scholar 

  14. Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Chem Mater 21(13):2825–2834

    Article  CAS  Google Scholar 

  15. Ouerghi A, Penuelas J, Andreazza-Vignolle C, Andreazza P, Bouet N, Estrade-Szwarckopf H (2006) J Appl Phys 100:124310

    Article  Google Scholar 

  16. Park JI, Kim MG, Jun YW, Lee JS, Lee WR, Cheon J (2004) J Am Chem Soc 126:9072

    Article  CAS  Google Scholar 

  17. Losno R, Bergametti G, Mouvier G (1987) Environ Technol Lett 8:77–87

    Article  CAS  Google Scholar 

  18. de Chateaubourg P, Quisefit JP, Garivait S, Steiner E, Goyon C (1993) Analusis 21:293–298

    Google Scholar 

  19. Petit C, Rusponi S, Brune H (2004) J Appl Phys 95:4251

    Article  CAS  Google Scholar 

  20. Lisiecki I, Parker D, Salzemann C, Pileni MP (2007) Chem Mater 19(16):4030–4036

    Article  CAS  Google Scholar 

  21. Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin Ö, Svedlindh P, Haase M, Weller H (2003) J Am Chem Soc 125(30):9090–9101

    Article  CAS  Google Scholar 

  22. Brust M, Bethell D, Schiffrin DJ, Kiely CJ (1995) Adv Mater 7:795

    Article  CAS  Google Scholar 

  23. Demortière A, Petit C (2007) Langmuir 23:8575–8584

    Article  Google Scholar 

  24. Quisefit JP, Garivait S, Losno R, Steiner E (1995) Nucleus 32:135–142

    Google Scholar 

  25. Nuspl M, Wegscheider W, Angeli J, Posch W, Mayr M (2004) Anal Bioanal Chem 379:640–645

    Article  CAS  Google Scholar 

  26. Cheng G, Guo T (2002) J Phys Chem B 106:5833–5839

    Article  CAS  Google Scholar 

  27. Speiser C, Baumann T, Niessner R (2001) J Anal Chem 370:752–759

    Article  CAS  Google Scholar 

  28. Quisefit JP, de Chateaubourg P, Garivait S, Steiner E (1994) X Ray Spectrom 23:59–64

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to express their gratitude to Dr. Anh-tu Ngo, LM2N (UMR 7070), Paris, France, for his work on the EDX analysis of nanocrystal samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Demortière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demortière, A., Losno, R., Petit, C. et al. Composition study of CoPt bimetallic nanocrystals of 2 nm. Anal Bioanal Chem 397, 1485–1491 (2010). https://doi.org/10.1007/s00216-010-3689-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3689-5

Keywords

Navigation