Skip to main content

Advertisement

Log in

The effects of abundant plasma protein depletion on global glycan profiling using NanoLC FT-ICR mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report the results of abundant plasma protein depletion on the analysis of underivatized N-linked glycans derived from plasma proteins by nanoLC Fourier-transform ion cyclotron resonance mass spectrometry. N-linked glycan profiles were compared between plasma samples where the six most abundant plasma proteins were depleted (n = 3) through a solid-phase immunoaffinity column and undepleted plasma samples (n = 3). Three exogenous glycan standards were spiked into all samples which allowed for normalization of the N-glycan abundances. The abundances of 20 glycans varying in type, structure, composition, and molecular weight (1,200–3,700 Da) were compared between the two sets of samples. Small fucosylated non-sialylated complex glycans were found to decrease in abundance in the depleted samples (greater than or equal to tenfold) relative to the undepleted samples. Protein depletion was found to marginally effect (less than threefold) the abundance of high mannose, hybrid, and large highly sialylated complex species. The significance of these findings in terms of future biomarker discovery experiments via global glycan profiling is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zaia J (2008) Mass spectrometry and the emerging field of glycomics. Chem Biol 15:881–892

    Article  CAS  Google Scholar 

  2. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophy Acta Gen Subj 1473:4–8

    Article  CAS  Google Scholar 

  3. Varki A (1993) Biological roles of oligosaccharides—all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  Google Scholar 

  4. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    Article  CAS  Google Scholar 

  5. Saxon E, Bertozzi CR (2001) Chemical and biological strategies for engineering cell surface glycosylation. Annu Rev Cell Dev Biol 17:1–23

    Article  CAS  Google Scholar 

  6. Varki A (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446:1023–1029

    Article  CAS  Google Scholar 

  7. Ilver D, Johansson P, Miller-Podraza H, Nyholm PG, Teneberg S, Karlsson KA (2003) Bacterium–host protein–carbohydrate interactions. Rec Carb Biol Sys Part B Spec App 363:134–157

    CAS  Google Scholar 

  8. Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, Taniguchi N (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99:1304–1310

    Article  CAS  Google Scholar 

  9. Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14:351–360

    Article  CAS  Google Scholar 

  10. An HJ, Miyamoto S, Lancaster KS, Kirmiz C, Li BS, Lam KS, Leiserowitz GS, Lebrilla CB (2006) Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res 5:1626–1635

    Article  CAS  Google Scholar 

  11. Bereman MS, Williams TI, Muddiman DC (2009) Development of a nanoLC LTQ orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control, and epithelial ovarian cancer patients. Anal Chem 81:1130–1136

    Article  CAS  Google Scholar 

  12. Williams TI, Saggese DA, Muddiman DC (2008) Studying O-linked protein glycosylations in human plasma. J Proteome Res 7:2562–2568

    Article  CAS  Google Scholar 

  13. Kyselova Z, Mechref Y, Al Bataineh MM, Dobrolecki LE, Hickey RJ, Vinson J, Sweeney CJ, Novotny MV (2007) Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res 6:1822–1832

    Article  CAS  Google Scholar 

  14. Williams TI, Toups KL, Saggese DA, Kalli KR, Cliby WA, Muddiman DC (2007) Epithelial ovarian cancer: disease etiology, treatment, detection, and investigational gene, metabolite, and protein biomarkers. J Proteome Res 6:2936–2962

    Article  CAS  Google Scholar 

  15. Kirmiz C, Li BS, An HJ, Clowers BH, Chew HK, Lam KS, Ferrige A, Alecio R, Borowsky AD, Sulaimon S, Lebrilla CB, Miyamoto S (2007) A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics 6:43–55

    CAS  Google Scholar 

  16. Kyselova Z, Mechref Y, Kang P, Goetz JA, Dobrolecki LE, Sledge GW, Schnaper L, Hickey RJ, Malkas LH, Novotny MV (2008) Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem 54:1166–1175

    Article  CAS  Google Scholar 

  17. Isailovic D, Kurulugama RT, Plasencia MD, Stokes ST, Kyselova Z, Goldman R, Mechref Y, Novotny MV, Clemmer DE (2008) Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. J Proteome Res 7:1109–1117

    Article  CAS  Google Scholar 

  18. Mechref Y, Hussein A, Bekesova S, Pungpapong V, Zhang M, Dobrolecki LE, Hickey RJ, Hammond ZT, Novotny MV (2009) Quantitative serum glycomics of esophageal adenocarcinoma and other esophageal disease onsets. J Proteome Res 8:2656–2666

    Article  CAS  Google Scholar 

  19. Schachter H (2000) The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconjugate J 17:465–483

    Article  CAS  Google Scholar 

  20. Kronewitter SR, An HJ, de Leoz ML, Lebrilla CB, Miyamoto S, Leiserowitz GS (2009) The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome. Proteomics 9:2986–2994

    Article  CAS  Google Scholar 

  21. Bereman MS, Young DD, Deiters A, Muddiman DC (2009) Development of a robust and high throughput method for profiling N-linked glycans derived from plasma glycoproteins by NanoLC-FTICR mass spectrometry. J Proteome Res 8:3764–3770

    Article  CAS  Google Scholar 

  22. Chu CS, Ninonuevo MR, Clowers BH, Perkins PD, An HJ, Yin HF, Killeen K, Miyamoto S, Grimm R, Lebrilla CB (2009) Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 9:1939–1951

    Article  CAS  Google Scholar 

  23. Anderson NL, Anderson NG (2002) The human plasma proteome—history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  Google Scholar 

  24. Hawkridge AM, Muddiman DC, Helmlein DM, Cataliotti A, Burnett JC (2008) Effect of plasma protein depletion on BNP-32 recovery. Clin Chem 54:933–934

    Article  CAS  Google Scholar 

  25. Plavina T, Wakshull E, Hancock WS, Hincapie M (2007) Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J Proteome Res 6:662–671

    Article  CAS  Google Scholar 

  26. Liu T, Qian WJ, Gritsenko MA, Camp DG, Monroe ME, Moore RJ, Smith RD (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4:2070–2080

    Article  CAS  Google Scholar 

  27. Huang L, Harvie G, Feitelson JS, Gramatikoff K, Herold DA, Allen DL, Amunngama R, Hagler RA, Pisano MR, Zhang WW, Fang XM (2005) Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics 5:3314–3328

    Article  CAS  Google Scholar 

  28. Andrews GL, Shuford CM, Burnett JCJ, Hawkridge AM, Muddiman DC (2009) Coupling of a vented column with splitless nanoRPLC-ESI-MS for the improved separation and detection of brain natriuretic peptide-32 and its proteolytic peptides. J Chromatogr B 877:948–854

    Article  CAS  Google Scholar 

  29. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of Glycans. J Proteome Res 7:1650–1659

    Article  CAS  Google Scholar 

  30. Knezevic A, Polasek O, Gornik O, Rudan I, Campbell H, Hayward C, Wright A, Kolcic I, O’Donoghue N, Bones J, Rudd PM, Lauc G (2009) Variability, heritability and environmental determinants of human plasma N-Glycome. J Proteome Res 8:694–701

    Article  CAS  Google Scholar 

  31. Bereman MS, Williams TI, Muddiman DC (2009) Development of a NanoLC LTQ orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control, and epethelial ovarian cancer patients. Anal Chem 81:1130–1136

    Article  CAS  Google Scholar 

  32. Barkauskas DA, An HJ, Kronewitter SR, de Leoz ML, Chew HK, White RWD, Leiserowitz GS, Miyamoto S, Lebrilla CB, Rocke DM (2009) Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data. Bioinformatics 25:251–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the National Institutes of Health (R33 CA105295), the W.M. Keck Foundation, and North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bereman, M.S., Muddiman, D.C. The effects of abundant plasma protein depletion on global glycan profiling using NanoLC FT-ICR mass spectrometry. Anal Bioanal Chem 396, 1473–1479 (2010). https://doi.org/10.1007/s00216-009-3368-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3368-6

Keywords

Navigation