Skip to main content
Log in

Field-based ion generation from microscale emitters on natural and artificial objects for atmospheric pressure mass spectrometry

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Field-based ion generation is described for ambient mass spectrometry. The technique allows the analysis of endogenously expressed chemicals and exogenously applied compounds directly from the cuticle of live insects in real time. Cuticular hairs serve as electric field-enhancing structures and play a key role in ion generation. Artificial emitters such as graphite whiskers or sharp metal tips replicate this effect.

Fruit fly in front of the ion trap entrance capillary (see file Online_abstract_figure.jpg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP:

Atmospheric pressure

APCI:

Atmospheric pressure chemical ionization

DART:

Direct analysis in real time

DESI:

Desorption electrospray ionization

ESI:

Electrospray ionization

FBIG:

Field-based ion generation

FD/FI:

Field desorption/field ionization

HC:

Hydrocarbon

HC1:

Z-11-Hexadecenyl acetate

HC2:

Z-11-Hexadecen-1-ol

HC3:

Z-11-Hexadecenal

IR:

Infrared

IT:

Ion trap

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

PESI:

Probe electrospray ionization

Q-TOF:

Quadrupole time-of-flight

References

  1. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Science 306:471–473

    Article  CAS  Google Scholar 

  2. Chipuk JE, Brodbelt JS (2008) J Amer Soc Mass Spectrom 19:1612–1620

    Article  CAS  Google Scholar 

  3. Cody RB, Laramee JA, Durst HD (2005) Anal Chem 77:2297–2302

    Article  CAS  Google Scholar 

  4. Yu S, Crawford E, Tice J, Musselman B, Wu J-T (2009) Anal Chem 81:193–202

    Article  CAS  Google Scholar 

  5. Chen H, Wortmann A, Zenobi R (2007) J Mass Spectrom 42:1123–1135

    Article  CAS  Google Scholar 

  6. Chen H, Yang S, Wortmann A, Zenobi R (2007) Angew Chemie 46:7591–7594

    Article  CAS  Google Scholar 

  7. Yew JY, Cody RB, Kravitz EA (2008) Proc Natl Acad Sci 105:7135–7140

    Article  CAS  Google Scholar 

  8. König S, Kollas O, Dreisewerd K (2007) Anal Chem 79:5484–5488

    Article  Google Scholar 

  9. Pirkl A, Dreisewerd K, Yew JY, König S (2009) 18th IMSC, Bremen, PWA326

  10. König S, Dreisewerd K, Yew JY, Pirkl A (2009) MassSpecEurope, Barcelona

  11. König S, Pirkl A, Dreisewerd K, EU patent application EP08157207, 29.05.2008, EP08019430.1, 6.11.2008, 28.5.2009; proposal to IZKF Münster 19.12.2007

  12. König S, Haegele KD, Fales HM (1998) Anal Chem 70:4453–4455

    Article  Google Scholar 

  13. Linden HB (2004) Eur Mass Spectrom 10:459–468

    Article  CAS  Google Scholar 

  14. Hiraoka K, Nishidate K, Mori K, Asakawa D, Suzuki S (2007) Rapid Commun Mass Spectrom 21:3139–3144

    Article  CAS  Google Scholar 

  15. Chen LC, Nishidate K, Saito Y, Mori K, Asakawa D, Takeda S, Kubota T, Terada N, Hashimoto Y, Hori H, Hiraoka K (2008) Rapid Commun Mass Spectrom 22:2366–2374

    Article  CAS  Google Scholar 

  16. Hiraoka K, Chen LC, Yu Z, Takeda S, Kubota T (2009) 18th IMSC, Bremen, PWA289

  17. Jeng J, Lin C-H, Shiea J (2005) Anal Chem 77:8170–8173

    Article  CAS  Google Scholar 

  18. Beckey HD (1959) Z Naturforsch 14A:712–721

    CAS  Google Scholar 

  19. Gross JH (2004) Mass Spectrometry. Springer, Heidelberg, pp 355–380

    Google Scholar 

  20. Schulten H-R, Beckey HD (1974) Org Mass Spectrom 9:1154–1155

    Article  CAS  Google Scholar 

  21. Schaub TM, Hendrickson CL, Qian K, Quinn JP, Marshall AG (2003) Anal Chem 75:2172–2176

    Article  CAS  Google Scholar 

  22. Anikin NB, Starikovskaia SM, Starikovskii AY (2006) J Physics D Appl Physics 39(15):3244–3252

    Article  CAS  Google Scholar 

  23. Pillai UR, Sahle-Demessie E (2005) Chem Commun 17:2256–2258

    Google Scholar 

  24. Yew JY, Dreisewerd K, Luftmann H, Müthing J, Pohlentz G, Kravitz EA (2009) Current Biology 19(15):1245–1254

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.D. acknowledges a grant from the German Research Foundation (DFG DR416/5-1). J.Y. was supported by a Human Frontier Science Program short-term fellowship and partly by grants to Prof. E.A. Kravitz from the National Institute of General Medical Sciences (GM074675 and GM067645) and National Science Foundation (IDS-075165). Scanning electron microscopy experiments were performed in the group of Prof. Dr. R. Reichelt (Institut für Medizinische Physik und Biophysik, Westfälische Wilhelms-Universität Münster) by Mrs. U. Keller and are highly appreciated. The authors also thank K. Rix for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone König.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 753 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirkl, A., Dreisewerd, K., Yew, J.Y. et al. Field-based ion generation from microscale emitters on natural and artificial objects for atmospheric pressure mass spectrometry. Anal Bioanal Chem 397, 3311–3316 (2010). https://doi.org/10.1007/s00216-009-3184-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3184-z

Keywords

Navigation