Skip to main content
Log in

Unilateral NMR applied to the conservation of works of art

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In conventional NMR, samples from works of art in sizes above those considered acceptable in the field of art conservation would have to be removed to place them into the bore of large superconducting magnets. The portable permanent-magnet-based systems, by contrast, can be used in situ to study works of art, in a noninvasive manner. One of these portable NMR systems, NMR-MOUSE®, measures the information contained in one pixel in an NMR image from a region of about 1 cm2, which can be as thin as 2–3 µm. With such a high depth resolution, profiles through the structures of art objects can be measured to characterize the materials, the artists’ techniques, and the deterioration processes. A novel application of the technique to study a deterioration process and to follow up a conservation treatment is presented in which micrometer-thick oil stains on paper are differentiated and characterized. In this example, the spin–spin relaxation T 2 of the stain is correlated to the iodine number and to the degree of cross-linking of the oil, parameters that are crucial in choosing an appropriate conservation treatment to remove them. It is also shown that the variation of T 2 over the course of treatments with organic solvents can be used to monitor the progress of the conservation interventions. It is expected that unilateral NMR in combination with multivariate data analysis will fill a gap within the set of high-spatial-resolution techniques currently available for the noninvasive analysis of materials in works of art, where procedures to study the inorganic components are currently far more developed than those suitable for the study of the organic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blümich B, Casanova F, Appelt S (2009) Chem Phys Lett 477:231–240

    Article  Google Scholar 

  2. Blümich B, Blümer P, Eidmann G, Guthausen A, Haken R, Schmitz U, Saito K, Zimmer G (1998) Magn Reson Imaging 16:479–484

    Article  Google Scholar 

  3. Blümich B, Casanova F, Perlo J, Anferova S, Anferov V, Kremer K, Goga N, Kupferschlger K, Adams M (2005) Magn Reson Imaging 23:197–201

    Article  Google Scholar 

  4. Casanova F, Perlo J, Blümich B (2006) In: Stapf S, Han S (eds) NMR in chemical engineering. Wiley-VCH, Weinheim

    Google Scholar 

  5. Blümich B, Perlo J, Casanova F (2008) Prog Nucl Magn Reson Spectrosc 52:197–269

    Article  Google Scholar 

  6. Prado P, Blümich B, Balcom BJ (1999) In: Chalmers JM (ed) Spectroscopy in process analysis. Sheffield Academic Press, Sheffield

    Google Scholar 

  7. Blümich B, Blümler P, Gasper L, Guthausen A, Göbbels V, Laukemper-Ostendorf S, Unseld K, Zimmer G (1999) Macromol Symp 141:83–93

    Google Scholar 

  8. Blümich B, Casanova F, Buda A, Kremer K, Wegener T (2005) Acta Phys Pol A 108:13–23

    Google Scholar 

  9. Brady SK, Conradi MS, Vaccaro CM (2005) J Magn Reson 172:342–345

    Article  CAS  Google Scholar 

  10. Bizzaro G, Melzi R, Tedoldi F, Kloza M, Maier D, Guthausen G (2005) Bruker Spin Rep 156:8–22

    Google Scholar 

  11. Tedoldi F (2002) Rend Sci Ist Lombardo B 136:239–256

    Google Scholar 

  12. Cignini R, Melzi R, Tedoldi F, Casieri C, De Luca F (2006) Magn Res Imaging 24:813–818

    Article  Google Scholar 

  13. Brai M, Camaiti M, Casieri C, De Luca F, Fantazzini P (2007) Magn Reson Imaging 25:461–465

    Article  CAS  Google Scholar 

  14. Segre AL, Blümich B (2002) Rison Magn Beni Cult Ric Futuro 25:34–36

    Google Scholar 

  15. Perlo J, Casanova F, Blümich B (2005) J Magn Reson 176:64–70

    Article  CAS  Google Scholar 

  16. Proietti N, Capitani D, Lamanna R, Presciutti F, Rossi E, Segre AL (2005) J Magn Reson 177:111–117

    Article  CAS  Google Scholar 

  17. Proietti N, Capitani D, Rossi E, Cozzolino S, Segre AL (2007) J Magn Reson 186:311–318

    Article  CAS  Google Scholar 

  18. Sharma S, Casanova F, Wache W, Segre AL, Blümich B (2003) Magn Reson Imaging 21:249–255

    Article  CAS  Google Scholar 

  19. Proietti N, Capitani D, Cozzolino S, Valentini M, Pedemonte E, Princi E, Vicini S, Segre AL (2006) J Phys Chem B 110:23719–23728

    Article  CAS  Google Scholar 

  20. Poli T, Toniolo L, Valentini M, Bizzaro G, Melzi R, Tedoldi F, Cannazza G (2007) J Cult Herit 8:134–140

    Article  Google Scholar 

  21. Blümich B, Anferova S, Sharma S, Segre AL, Federici C (2003) J Magn Reson 161:204–209

    Article  Google Scholar 

  22. Casieri C, Bubici S, Viola I, De Luca F (2004) Solid State Nucl Magn Reson 26:65–73

    Article  CAS  Google Scholar 

  23. Proietti N, Capitani D, Pedemonte E, Blümich B, Segre AL (2004) J Magn Reson 170:113–120

    Article  CAS  Google Scholar 

  24. Viel S, Capitani D, Proietti N, Ziarelli F, Segre AL (2004) Appl Phys A 79:357–361

    Article  CAS  Google Scholar 

  25. Viola I, Bubici S, Casieri C, De Luca F (2004) J Cult Herit 5:257–261

    Article  Google Scholar 

  26. Casieri C, Senni L, Romagnoli M, Santamaria U, De Luca F (2004) J Magn Reson 171:364–372

    Article  CAS  Google Scholar 

  27. Senni L, Casieri C, Bovino A, Gaetani MC, De Luca F (2009) Wood Sci Technol 43:167–180

    Article  CAS  Google Scholar 

  28. Boileau C, Pessanha P, Tardif C, Castro K, Proietti N, Capitani D, Vicini S, Madariaga JM, Carvalho ML, Princi E (2009) J Appl Polym Sci 113:2030–2040

    Article  CAS  Google Scholar 

  29. Presciutti F, Perlo J, Casanova F, Glöggler S, Miliani C, Blümich B, Brunetti BG, Sgamellotti A (2008) Appl Phys Lett. doi:10.1063/1.2963026

  30. Rühli FJ, Böni T, Perlo J, Casanova F, Baias M, Egarter E, Blümich B (2007) J Cult Herit 8:257–263

    Article  Google Scholar 

  31. Castro K, Proietti N, Princi E, Pessanh S, Carvalho ML, Vicini S, Capitani D, Madariaga JM (2008) Anal Chim Acta 623:187–194

    Article  CAS  Google Scholar 

  32. Castro K, Pessanha S, Proietti N, Princi E, Capitani D, Carvalho ML, Madariaga JM (2008) Anal Bioanal Chem 391:433–441

    Article  CAS  Google Scholar 

  33. Stockman D (2007) In: The Book and Paper Group annual, vol 26. American Institute for Conservation, Washington (in press)

  34. Derrik MR, Stulik D, Landry JM (1999) Infrared spectroscopy in conservation science. Scientific tools for conservation. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  35. Marinach C, Papillon M-C, Pepe C (2004) J Cult Herit 5:231–240

    Article  Google Scholar 

  36. Van den Berg JDJ (2002) Analytical chemical studies on traditional linseed oil paints. PhD thesis, University of Amsterdam, MolArt series number 6. AMOLF-FOM, Amsterdam

  37. De la Rie ER (1982) Stud Conserv 27:1–7

    Article  Google Scholar 

  38. De la Rie ER (1982) Stud Conserv 27:65–69

    Article  Google Scholar 

  39. De la Rie ER (1982) Stud Conserv 27:102–108

    Article  Google Scholar 

  40. Nevin A, Comelli D, Valentini G, Osticioli I, Anglos D, Burnstock A, Cather S, Cubeddu R (2008) In: Townsend JH, Toniolo L, Cappitelli F (eds) Conservation science 2007. Archetype, London

    Google Scholar 

  41. Mills JS, White R (1987) The organic chemistry of museum objects. Butterworths, London

    Google Scholar 

  42. Rheineck AE, Austin RO (1968) In: Myers RR, Long JS (eds) Treatise on coatings, vol 1. Dekker, New York

    Google Scholar 

  43. Wicks ZW Jr, Jones FN, Pappas SP (1992) Organic coatings: science and technology, vol I. Wiley, New York

    Google Scholar 

  44. Mallégol J, Gonon L, Lemaire J, Gardette J-L (2001) Polym Degrad Stab 72:191–197

    Article  Google Scholar 

  45. ASTM International (2006) In: Annual book of ASTM standards. ASTM International, West Conshohocken

  46. Keeler J (2005) Understanding NMR spectroscopy. Wiley, Chichester

    Google Scholar 

  47. The Original Soap Dish (2002) Fatty acid composition and properties of oils chart. http://thesoapdish.com/oil-properties-chart.htm. Accessed 10 June 2009

  48. Townsend JH, Toniolo L, Cappitelli F (eds) Conservation science 2007. Archetype, London

Download references

Acknowledgements

The authors are indebted to Niels Nielsen from the University of Aarhus, Denmark, for helpful discussions on the data analysis and would also like to thank Cyndi O’Hern and Lindsey Tyne, Pratt Institute alumni fellows, for preparing some of the samples used in this study, and Julie Arslanoglu, from The Metropolitan Museum of Art, for helpful comments. D.S. would like to acknowledge the staff of the Paper Conservation Department at The Metropolitan Museum of Art for their support in the initial stages of the project. We are also grateful to Wolfgang Schoefberger for preliminary unilateral NMR studies and to Bruker Optics for the loan of a minispec ProFiler®. This work was possible thanks to funding from the Alfred. P. Sloan Foundation, which supported the purchase of the Profile NMR-MOUSE®, as well as by funding provided by The Andrew W. Mellon Foundation, the Kress Foundation, the National Science Foundation (no. CHE-0554400), and the Camille and Hendry Dreyfus Foundation Special Grant Program in the Chemical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia A. Centeno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Federico, E., Centeno, S.A., Kehlet, C. et al. Unilateral NMR applied to the conservation of works of art. Anal Bioanal Chem 396, 213–220 (2010). https://doi.org/10.1007/s00216-009-3128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3128-7

Keywords

Navigation