Skip to main content
Log in

Patterning of 293T fibroblasts on a mica surface

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Controllable cell growth on the defined areas of surfaces is important for potential applications in biosensor fabrication and tissue engineering. In this study, controllable cell growth was achieved by culturing 293 T fibroblast cells on a mica surface which had been patterned with collagen strips by a microcontact printing (μCP) technique. The collagen area was designed to support cell adhesion and the native mica surface was designed to repel cell adhesion. Consequently, the resulting cell patterns should follow the micro-patterns of the collagen. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurement, atomic-force microscope (AFM) observation, and force-curve measurement were used to monitor property changes before and after the collagen adsorption process. Further data showed that the patterned cells were of good viability and able to perform a gene-transfection experiment in vitro. This technique should be of potential applications in the fields of biosensor fabrication and tissue engineering.

Controllable cells growth has been achieved by culturing 293T fibroblast cells on the mica surface which had been patterned with collagen strips by microcontact printing (µCP) technique

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gross GW, Rhoades BK, Azzazy HME, Wu MC (1995) Biosens Bioelectron 10:553–567

    Article  CAS  Google Scholar 

  2. Langer R, Vacanti JP (1993) Tissue Eng Sci 260:920–926

    CAS  Google Scholar 

  3. Fromherz P, Offenhauser A, Vetter T, Weis J (1991) Science 252:1290–1293

    Article  CAS  Google Scholar 

  4. Zeck G, Fromherz P (2001) Proc Natl Acad Sci USA 98:10457–10462

    Article  CAS  Google Scholar 

  5. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Science 276:1425–1428

    Article  CAS  Google Scholar 

  6. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20:2363–2376

    Article  CAS  Google Scholar 

  7. Ghosh P, Amirpour ML, Lackowski WM, Pishko MV, Crooks RM (1999) Angew Chem Int Ed 38:1592–1595

    Article  CAS  Google Scholar 

  8. Lahann J, Balcells M, Rodon T, Lee J, Choi IS, Jensen KF, Langer R (2002) Langmuir 18:3632–3638

    Article  CAS  Google Scholar 

  9. Reyes DR, Perruccio EM, Becerra SP, Locascio LE, Gaitan M (2004) Langmuir 20:8805–8811

    Article  CAS  Google Scholar 

  10. Ma H, Hyun J, Zhang Z, Beebe TP, Chilkoti A (2005) Adv Funct Mater 15:529–540

    Article  CAS  Google Scholar 

  11. Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ, Choi IS, Ingber DE, Whitesides GM (2000) Proc Natl Acad Sci USA 97:2408–2413

    Article  CAS  Google Scholar 

  12. de-Silva MN, Desai R, Odde DJ (2004) Biomed Microdevices 6:219–222

    Article  CAS  Google Scholar 

  13. Ito Y (1999) Biomaterials 20:2333–2342

    Article  CAS  Google Scholar 

  14. Lee KB, Kim Y, Choi IS (2003) Bull Korean Chem Soc 24:161–162

    Article  CAS  Google Scholar 

  15. Sarno DM, Murphy AV, DiVirgilio ES, Jones WE, Ben RN (2003) Langmuir 19:4740–4744

    Article  CAS  Google Scholar 

  16. Lin Z, Wang C, Feng X, Liu Mi, Li J, Bai C (1998) Nucleic Acids Res 26:3228–3234

    Article  CAS  Google Scholar 

  17. Wang LK, Feng XZ, Hou S, Chan QL, Qin M (2006) Surf Interface Anal 38:44–50

    Article  CAS  Google Scholar 

  18. Themistocleous GS, Katopodis H, Sourla A, Lembessis P, Doillon CJ, Soucacos PN, Koutsilieris M (2004) In Vivo 18:687–696

    CAS  Google Scholar 

  19. Hou S, Yang K, Qin M, Feng XZ, Guan L, Yang YL, Wang C (2008) Biosens Bioelectron 24:918–922

    Article  CAS  Google Scholar 

  20. Wang R, Yang YL, Qin M, Wang LK, Yu L, Shao B, Qiao MQ, Wang C, Feng XZ (2007) Chem Mater 19:3227–3231

    Article  CAS  Google Scholar 

  21. Remy JS, Abdallah B, Zanta MA, Boussif O, Behr JP, Demeneix B (1998) Adv Drug Del Rev 30:85–95

    Article  CAS  Google Scholar 

  22. Godbey WT, Wu KK, Mikos AG (1999) J Contr Rel 60:149–160

    Article  CAS  Google Scholar 

  23. Branch DW, Wheeler BC, Brewer GJ, Leckband DE (2000) IEEE Trans Biomed Eng 43:290–300

    Article  Google Scholar 

  24. Li Y, Yuan B, Ji H, Han D, Chen S, Tian F, Jiang X (2007) Angew Chem Int Ed Engl 46:1094–1096

    Article  CAS  Google Scholar 

  25. Healy KE, Thomas CH, Rezania A, Kim JE, McKeownj PJ, Lom B, Hockberge PE (1996) Biomaterials 17:195–208

    Article  CAS  Google Scholar 

  26. Lee P, Lin R, Moon J, Lee LP (2006) Biomed Microdevices 8:35–41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant number: 90403140) and Tianjin Science Technology Research Funds of China (no. TJ043801111), which are grateful acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Zeng Feng or Chen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, S., Li, XX., Li, XY. et al. Patterning of 293T fibroblasts on a mica surface. Anal Bioanal Chem 394, 2111–2117 (2009). https://doi.org/10.1007/s00216-009-2892-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2892-8

Keywords

Navigation