Skip to main content
Log in

Complementary precursor ion and neutral loss scan mode tandem mass spectrometry for the analysis of glycerophosphatidylethanolamine lipids from whole rat retina

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A “shotgun” tandem mass spectrometry (MS) approach involving the use of multiple lipid-class-specific precursor ion and neutral loss scan mode experiments has been employed to identify and characterize the glycerophosphatidylethanolamine (GPEtn) lipids that were present within a crude lipid extract of a normal rat retina, obtained with minimal sample handling prior to analysis. Characterization of these lipids was performed by complementary analysis of their protonated and deprotonated precursor ions, as well as their various ionic adducts (e.g., Na+, Cl-), using a triple-quadrupole mass spectrometer. Notably, the application of novel precursor ion and neutral loss scans of m/z 164 and m/z 43, respectively, for the specific identification of sodiated GPEtn precursor ions following the addition of 500 μM NaCl to the crude lipid extracts was demonstrated. The use of these novel MS/MS scans in parallel provided simplified MS/MS spectra and enhanced the detection of 1-alkenyl, 2-acyl (plasmenyl) GPEtn lipids relative to the positive ion mode neutral loss m/z 141 commonly used for GPEtn analysis. Furthermore, the novel use of a “low energy” neutral loss scan mode experiment to monitor for the exclusive loss of 36m/z (HCl) from [M+Cl]- GPEtn adducts was demonstrated to provide a more than 25-fold enhancement for the detection of GPEtn lipids in negative ion mode analysis. Subsequent “high-energy” pseudo MS3 product ion scans on the precursor ions identified from this experiment were then employed to rapidly characterize the fatty acyl chain substituents of the GPEtn lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. LaBaer J (2005) J Proteome Res 4:1053–1059

    Article  CAS  Google Scholar 

  2. Semmes OJ, Malik G, Ward M (2006) J Cell Biochem 98:496–503

    Article  CAS  Google Scholar 

  3. Wenk MR (2005) Nat Rev Drug Discov 4:594–610

    Article  CAS  Google Scholar 

  4. Jones JJ, Borgmann S, Wilkins CL et al (2006) Anal Chem 78:3062–3071

    Article  CAS  Google Scholar 

  5. Estrada R, Yappert MC (2004) J Mass Spectrom 39:412–422

    Article  CAS  Google Scholar 

  6. Jones JJ, Batoy SM, Wilkins CL (2005) Comput Biol Chem 29:294–302

    Article  CAS  Google Scholar 

  7. Brugger B, Erben G, Sandhoff R et al (1997) Proc Natl Acad Sci USA 94:2339–2344

    Article  CAS  Google Scholar 

  8. Ejsing CS, Duchoslav E, Sampaio J et al (2006) Anal Chem 78:6202–6214

    Article  CAS  Google Scholar 

  9. Ekroos K, Chernushevich IV, Simons K et al (2002) Anal Chem 74:941–949

    Article  CAS  Google Scholar 

  10. Han X, Gross RW (2003) J Lipid Res 44:1071–1079

    Article  CAS  Google Scholar 

  11. Pulfer M, Murphy RC (2003) Mass Spectrom Rev 22:332–364

    Article  CAS  Google Scholar 

  12. Han X, Gross RW (2005) Mass Spectrom Rev 24:367–412

    Article  CAS  Google Scholar 

  13. Schwudke D, Hannich JT, Surendranath V et al (2007) Anal Chem 79:4083–4093

    Article  CAS  Google Scholar 

  14. Schwudke D, Oegema J, Burton L et al (2006) Anal Chem 78:585–595

    Article  CAS  Google Scholar 

  15. Ejsing C (2007) Doctoral dissertation, Technische Universitat Dresden, Dresden

  16. Zhang X, Reid GE (2006) Int J Mass Spectrom 252:242–255

    Article  CAS  Google Scholar 

  17. Folch J, Lees M, Sloane Stanley GH (1957) J Biol Chem 226:497–509

    CAS  Google Scholar 

  18. Haimi P, Uphoff A, Hermansson M et al (2006) Anal Chem 78:8324–8331

    Article  CAS  Google Scholar 

  19. Han X, Gross R (1995) J Am Soc Mass Spectrom 6:1202–1210

    Article  CAS  Google Scholar 

  20. Murphy R (2002) Mass spectrometry of phospholipids: tables of molecular and product ions. Illuminati, Denver

    Google Scholar 

  21. Simões C, Simões V, Reis A et al (2008) Rapid Commun Mass Spectrom 22:3238–3244

    Article  Google Scholar 

  22. Zemski Berry K, Murphy R (2004) J Am Soc Mass Spectrom 15:1499–1508

    Article  CAS  Google Scholar 

  23. Murphy EJ, Stephens R, Jurkowitz-Alexander M et al (1993) Lipids 28:565–568

    Article  CAS  Google Scholar 

  24. Hsu F, Turk J (2000) J Mass Spectrom 35:596–606

    Article  CAS  Google Scholar 

  25. Harrison K, Murphy R (1995) J Mass Spectrom 30:1772–1773

    Article  CAS  Google Scholar 

  26. Fahy E, Subramaniam S, Brown HA et al (2005) J Lipid Res 46:839–861

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin E. Reid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Summary of glycerophosphatidylethanolamine (GPEtn) lipids identified from a whole rat retina crude lipid extract by complementary neutral loss and precursor ion scan mode tandem mass spectrometry. Fatty acyl species were determined by negative ion mode product ion CID-MS/MS or by PI scans of m/z of specific fatty acids. Lipid nomenclature used is outlined in [26] (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lydic, T.A., Busik, J.V., Esselman, W.J. et al. Complementary precursor ion and neutral loss scan mode tandem mass spectrometry for the analysis of glycerophosphatidylethanolamine lipids from whole rat retina. Anal Bioanal Chem 394, 267–275 (2009). https://doi.org/10.1007/s00216-009-2717-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2717-9

Keywords

Navigation