Skip to main content
Log in

Estimating relative carbonyl levels in muscle microstructures by fluorescence imaging

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 15 October 2008

Abstract

The increase in the levels of protein carbonyls, biomarkers of oxidative stress, appears to play an important role in aging skeletal muscle. However, the exact distributions of carbonyls among various skeletal muscle microstructures still remain largely unknown, partly owing to the lack of adequate techniques to carry out these measurements. This report describes an immunohistochemical approach to determine the relative abundance of carbonyls in the intermyofibrillar mitochondria (IFM), the subsarcolemmal mitochondria (SSM), the cytoplasm, and the extracellular space of skeletal muscle. These morphological features were defined by labeling the nucleus, the Z-lines, and mitochondria. Carbonyls were detected by derivatization with dinitrophenylhydrazine followed by labeling with an Alexa 488-labeled anti-dinitrophenyl primary antibody. Alexa 488 fluorescence (green) in different fiber microstructures was used to estimate the relative abundance of carbonyls. On the basis of the samples examined, preliminary results suggest that the most dramatic age-related changes in carbonyl levels occur in the extracellular space, followed in a decreasing order by SSM, IFM, and the cytoplasm. These observations were confirmed in the soleus and semimembranosus muscles composed predominantly of type I and type II fibers, respectively. This approach could easily be extended to the investigation of carbonyl levels in other muscles (composed of mixed skeletal muscle fiber types) or other tissues in which protein carbonyls are present.

Imaging of Labeled Carbonyls in Rat Skeletal Muscle

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reid MB (2001) Med Sci Sports Exerc 33:371–376

    Article  CAS  Google Scholar 

  2. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Methods Enzymol 233:346–357

    Article  CAS  Google Scholar 

  3. Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF (1999) Free Radic Biol Med 26:303–308

    Article  CAS  Google Scholar 

  4. Sundaram K, Panneerselvam KS (2006) Biogerontology 7:111–118

    Article  CAS  Google Scholar 

  5. Stadtman ER (2001) Ann N Y Acad Sci 928:22–38

    Article  CAS  Google Scholar 

  6. Cavaletto M, Ghezzi A, Burlando B, Evangelisti V, Ceratto N, Viarengo A (2002) Comp Biochem Physiol C Toxicol Pharmacol 131:447–455

    Article  CAS  Google Scholar 

  7. England K, Cotter T (2004) Biochem Biophys Res Commun 320:123–130

    Article  CAS  Google Scholar 

  8. van der Vlies D, Pap EH, Post JA, Celis JE, Wirtz KW (2002) Biochem J 366:825–830

    Google Scholar 

  9. Costa VM, Amorim MA, Quintanilha A, Moradas-Ferreira P (2002) Free Radic Biol Med 33:1507–1515

    Article  CAS  Google Scholar 

  10. Hood DA (2001) J Appl Physiol 90:1137–1157

    CAS  Google Scholar 

  11. Palmer JW, Tandler B, Hoppel CL (1977) J Biol Chem 252:8731–8739

    CAS  Google Scholar 

  12. Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH (2006) J Gerontol A Biol Sci Med Sci 61:534–540

    Google Scholar 

  13. Allen DL, Roy RR, Edgerton VR (1999) Muscle Nerve 22:1350–1360

    Article  CAS  Google Scholar 

  14. Ohira Y, Yoshinaga T, Ohara M, Nonaka I, Yoshioka T, Yamashita-Goto K, Shenkman BS, Kozlovskaya IB, Roy RR, Edgerton VR (1999) J Appl Physiol 87:1776–1785

    CAS  Google Scholar 

  15. Rosser BW, Dean MS, Bandman E (2002) Int J Dev Biol 46:747–754

    Google Scholar 

  16. Tseng BS, Kasper CE, Edgerton VR (1994) Cell Tissue Res 275:39–49

    Article  CAS  Google Scholar 

  17. Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL (1999) Arch Biochem Biophys 372:399–407

    Article  CAS  Google Scholar 

  18. Chen JC, Warshaw JB, Sanadi DR (1972) J Cell Physiol 80:141–148

    Article  CAS  Google Scholar 

  19. Muscari C, Frascaro M, Guarnieri C, Caldarera CM (1990) Biochim Biophys Acta 1015:200–204

    Article  CAS  Google Scholar 

  20. Craig EE, Hood DA (1997) Am J Physiol 272:H2983–H2988

    CAS  Google Scholar 

  21. Hansford RG (1978) Biochem J 170:285–295

    CAS  Google Scholar 

  22. Manzelmann MS, Harmon HJ (1987) Mech Ageing Dev 39:281–288

    Article  CAS  Google Scholar 

  23. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) FASEB J 19:419–421

    CAS  Google Scholar 

  24. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996) Nature 382:120–121

    Article  CAS  Google Scholar 

  25. Smith MA, Sayre LM, Anderson VE, Harris PL, Beal MF, Kowall N, Perry G (1998) J Histochem Cytochem 46:731–735

    CAS  Google Scholar 

  26. Ahmadzadeh H, Andreyev D, Arriaga EA, Thompson LV (2006) J Gerontol A Biol Sci Med Sci 61:1211–1218

    Google Scholar 

  27. Radak Z, Sasvari M, Nyakas C, Pucsok J, Nakamoto H, Goto S (2000) Arch Biochem Biophys 376:248–251

    Article  CAS  Google Scholar 

  28. Radak Z, Takahashi R, Kumiyama A, Nakamoto H, Ohno H, Ookawara T, Goto S (2002) Exp Gerontol 37:1423–1430

    Article  CAS  Google Scholar 

  29. Vlassara H, Bucala R (1996) Diabetes 45(Suppl 3):S65–S66

    CAS  Google Scholar 

  30. Avery NC, Bailey AJ (2005) Scand J Med Sci Sports 15:231–240

    Article  CAS  Google Scholar 

  31. Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM (1998) Biochem J 330(1):345–351

    CAS  Google Scholar 

  32. Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C (2005) Am J Physiol Regul Integr Comp Physiol 289:R1564–R1572

    CAS  Google Scholar 

  33. Suh JH, Heath SH, Hagen TM (2003) Free Radic Biol Med 35:1064–1072

    Article  CAS  Google Scholar 

  34. Soper DS (2007) Free statistics calculators. http://www.danielsoper.com/statcalc/

  35. Loschen G, Azzi A, Richter C, Flohe L (1974) FEBS Lett 42:68–72

    Article  CAS  Google Scholar 

  36. Boveris A, Chance B (1973) Biochem J 134:707–716

    CAS  Google Scholar 

  37. Beckman KB, Ames BN (1998) Physiol Rev 78:547–581

    CAS  Google Scholar 

  38. Drew B, Leeuwenburgh C (2002) Ann N Y Acad Sci 959:66–81

    CAS  Google Scholar 

  39. Cadenas E, Davies KJ (2000) Free Radic Biol Med 29:222–230

    Article  CAS  Google Scholar 

  40. Espinosa A, Leiva A, Pena M, Muller M, Debandi A, Hidalgo C, Carrasco MA, Jaimovich E (2006) J Cell Physiol 209:379–388

    Article  CAS  Google Scholar 

  41. Jackson MJ (2005) Philos Trans R Soc Lond B Biol Sci 360:2285–2291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (AG025371). E.A.A. acknowledges the support of NIH by a Career Award (1K02-AG21453). The authors also thank Janice Shoeman from the Department of Physical Medicine and Rehabilitation of the University of Minnesota for preparing the muscle cross sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar A. Arriaga.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00216-008-2389-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Navratil, M., Thompson, L.V. et al. Estimating relative carbonyl levels in muscle microstructures by fluorescence imaging. Anal Bioanal Chem 391, 2591–2598 (2008). https://doi.org/10.1007/s00216-008-2187-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2187-5

Keywords

Navigation