Skip to main content

Advertisement

Log in

Individually addressable microelectrode array for monitoring oxygen and nitric oxide release

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have fabricated a six individual addressable gold working electrode microarray. The device is wirebonded to an eight-pin DIL package that can be easily interconnected to an external multi-channel potentiostat. A polyion complex film coating on the electrode surface provides a suitable coating for the growth of cells. The responses of oxygen and nitric oxide were assessed on uncoated and coated devices using electroanalytical methods. The film coating reduced the diffusion current by approximately 20% in both cases. No changes in the electrochemical mechanism were observed. Simultaneous recordings were obtained for 2 h in the presence of the cells, thus the device is stable for the duration of the bioanalytical measurements. Measurements were conducted to study the simultaneous changes in oxygen and nitric oxide levels in cultured fibroblast cells in the presence of growth hormones that cause cell proliferation. Increases in oxygen consumption of the cells were coupled with increases in nitric oxide levels when in the presence of the growth hormones. Use of a biological detergent to cause an oxidative burst resulted in a large increase in the current for potentials set to detect nitric oxide and oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raluca-Ioana S, van Staden JF, Aboul-Enein HY (1999) Crit Rev Anal Chem 29:133–153

    Article  Google Scholar 

  2. Cui HF, Ye JS, Chen Y, Chong SC, Sheu FS (2006) Anal Chem 78:6347–6355

    Article  CAS  Google Scholar 

  3. Docka E, Christensona A, Sapelnikovaa S, Krejcib J, Emn´eusa J, Ruzgasa T (2005) Anal Chim Acta 531:165–172

    Article  Google Scholar 

  4. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Chem Rev 100:2595–2626

    Article  CAS  Google Scholar 

  5. Beriet C, Pletcher D (1994) J Electroanal Chem 375:213–218

    Article  CAS  Google Scholar 

  6. Cammann RK, Mokwa W, Rospert M (1992) Sens Actuators B 7:758–762

    Article  Google Scholar 

  7. Niwa O (1995) Electroanalysis 7:606–613

    Article  CAS  Google Scholar 

  8. Mizutani F, Yabuki S, Katsura T (1993) Anal Chim Acta 274:201–207

    Article  CAS  Google Scholar 

  9. Emr SA, Yacynych AM (1995) Electroanalysis 7:913–923

    Article  CAS  Google Scholar 

  10. Fortier G, Vaillancourt M, Belanger D (1992) Electroanalysis 4:275–283

    Article  CAS  Google Scholar 

  11. Mauritz KA, Moore RB (2004) Chem Rev 104:4535–4586

    Article  CAS  Google Scholar 

  12. Kamei K, Haruyama T, Mie M, Yanagida Y, Aizawa M, Kobatake E (2004) Biosens Bioelectron 19:1121–1124

    Article  CAS  Google Scholar 

  13. Mizutani F, Yabuki S, Hirata Y (1995) Anal Chim Acta 314:233–239

    Article  CAS  Google Scholar 

  14. Kamei K, Haruyama T, Mie M, Yanagida Y, Kobatake E, Aizawa M (2003) Biotechnol Lett 25:321–325

    Article  CAS  Google Scholar 

  15. Stallmeyer B, Anhold M, Wetzler C, Kahlina K, Pfeilzchifter J, Frank S (2002) Nitric Oxide 6:168–177

    Article  CAS  Google Scholar 

  16. Folkman J, Klagsbrun M (1987) Science 235:442–447

    Article  CAS  Google Scholar 

  17. Risau W (1990) Prog Growth Factor Res 2:71–79

    Article  CAS  Google Scholar 

  18. Feelisch M (1991) J Cardiovasc Pharmacol 17:S25−S33

    Article  Google Scholar 

  19. Patel BA, Arundell MA, Parker KH, Yeoman MS O’Hare D (2006) Anal Chem 78:7643–7648

    Article  CAS  Google Scholar 

  20. Battino R, Clever HL (1966) Chem Rev 66:395–463

    Article  CAS  Google Scholar 

  21. Schor S, Schor A, Durning P, Rushton G (1985) J Cell Sci 73:235–244

    CAS  Google Scholar 

  22. Schor S, Schor A, Rushton G (1988) J Cell Sci 90:401–407

    Google Scholar 

  23. Schor AM, Schor SL, Kumar S (1979) Int J Cancer 24:225–234

    Article  CAS  Google Scholar 

  24. Tomeš J (1937) Collect Czech Chem Commun 9:150–167

    Google Scholar 

  25. Oldham KB, Zoski CG (1988) J Electroanal Chem 256:11–19

    Article  CAS  Google Scholar 

  26. Bond AM, Luscombe D, Oldham KB, Zoski CG (1988) J Electroanal Chem 249:1–14

    Article  CAS  Google Scholar 

  27. Wisniewski N, Reichert M (2000) Colloids Surf B 18:197–219

    Article  CAS  Google Scholar 

  28. Fallon JH, Seroogy KB, Loughlin SE, Morrison RS, Bradshaw RA, Knaver DJ, Cunningham DD (1984) Science 224:1107–1109

    Article  CAS  Google Scholar 

  29. Singer AJ, Clark RA (1999) N Engl J Med 341:738–746

    Article  CAS  Google Scholar 

  30. Butler A, Nicholson R (2003) Life, death and nitric oxide. Royal Society of Chemistry, Cambridge

    Google Scholar 

  31. Gospodarowicz D (1979) Mol Cell Biochem 25:79–110

    Article  CAS  Google Scholar 

  32. Amatore C, Arbault S, Bruce D, d’Oliveira P, Erard M, Vuillaume M (2000) Faraday Discuss 116:319–333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BAP acknowledges support provided by an EPSRC LSI Postdoctoral Fellowship Grant (EP/C532058/1). All other authors were supported by EPSRC Grant No. GR/T19162/01 and EP/C547586/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavik Anil Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, B.A., Arundell, M., Quek, R.G.W. et al. Individually addressable microelectrode array for monitoring oxygen and nitric oxide release. Anal Bioanal Chem 390, 1379–1387 (2008). https://doi.org/10.1007/s00216-007-1803-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1803-0

Keywords

Navigation