Skip to main content
Log in

Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The voltammetric responses of chlorine in aqueous acid solutions have been explored using different carbon-based electrodes. Edge-plane pyrolytic graphite has more electrochemical reversibility than glassy carbon, basal-plane pyrolytic graphite, or boron-doped diamond electrodes. A significant reduction in the overpotential is observed on the edge-plane pyrolytic-graphite electrode in contrast with the other carbon-based electrode substrates. These results suggest that edge-plane pyrolytic graphite can be optimally used as the working electrodes in Clark-cell devices for low-potential amperometric gas sensing of Cl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. White GC (1986) The handbook of chlorination. Van Nostrand, Reinhold, NY

    Google Scholar 

  2. Kishioka S-Y, Kosugi T, Yamada A (2004) Electroanalysis 17:724

    Article  Google Scholar 

  3. Boulanger B, Nikolaidis NP, Garrick NW (2001) Appl Spectrosc 55:1568

    Article  CAS  Google Scholar 

  4. Brook TE, Narayanaswamy R (1997) Sens Actuators B B39:195

    Article  Google Scholar 

  5. Pedersen-Bjergaard S, Greibrokk T (1996) J Anal At Spectrom 11:117

    Article  CAS  Google Scholar 

  6. Smith VC, Richardson T, Anderson HL (1997) Supramol Sci 4:503

    Article  CAS  Google Scholar 

  7. Date K, Yamamoto Y (1998) Japan Kokai Tokkyo Koho. Patent, p 5

  8. Canete F, Rios A, Luque de Castro MD, Valcarcel M (1988) Analyst 113:739

    Article  CAS  Google Scholar 

  9. Verma KK, Jain A, Townsend A (1992) Anal Chim Acta 261:233

    Article  CAS  Google Scholar 

  10. Hernlem BJ, Tsai L-S (2000) J Am Water Works Assoc 92:101

    CAS  Google Scholar 

  11. Matuszewski W, Trojanowicz M (1988) Anal Chim Acta 207:59

    Article  CAS  Google Scholar 

  12. Tsaousis AN, Huber CO (1985) Anal Chim Acta 178:319

    Article  CAS  Google Scholar 

  13. Van den Berg A, Koudelka-Hep M, Van der Schoot BH, De Rooij NF, Verney-Norberg E, Grisel A (1992) Anal Chim Acta 269:75

    Article  CAS  Google Scholar 

  14. Van den Berg A, Grisel A, Verney-Norberg E, van der Schoot BH, Koudelka-Hep M, de Rooij NF (1993) Sens Actuators B 13:396

    Article  CAS  Google Scholar 

  15. Sathiyamoorthi R, Chandrasekaran R, Mathanmohan T, Muralidharan B, Vasudevan T (2004) Sens Actuators B B99:336

    Article  CAS  Google Scholar 

  16. Hahn CEW (1998) Analyst 123(6):57R, http://www.alphasense.com

    Article  CAS  PubMed  Google Scholar 

  17. Buzzeo MC, Hardacre C, Compton RG (2004) Anal Chem 76:4583

    Article  CAS  PubMed  Google Scholar 

  18. Coburn JT, Kafil JB, Schick KG, Huber CO (1983) Water Chlorination Environ Impact Health Eff 4:743

    CAS  Google Scholar 

  19. Hugo Seymour E, Lawrence NS, Compton RG (2003) Electroanalysis 15:689

    Article  Google Scholar 

  20. McCreery RL (1990) In: Bard AJ (ed) Electroanalytical chemistry. Marcel Dekker, New York, p 221

  21. Moore RR, Banks CE, Compton RG (2004) Analyst 129:755

    Article  CAS  PubMed  Google Scholar 

  22. Spalding CW (1962) AIChE 8:85

    Article  Google Scholar 

  23. Mattson JSI, Mark HB Jr, Weber WJ Jr (1969) Anal Chem 41:355

    Article  CAS  Google Scholar 

  24. Chen P, McCreery RL (1996) Anal Chem 68:958

    Google Scholar 

  25. Bard AJ, Parsons R, Jordan J (eds) (1985) Standard potentials in aqueous solution. Marcel Dekker, New York

    Google Scholar 

  26. Tang A, Sandall OC (1985) J Chem Eng Data 30:189

    Article  CAS  Google Scholar 

  27. Cotton FA, Wilkinson G (1962) Advanced inorganic chemistry—a comprehensive text. Interscience, New York

    Google Scholar 

  28. Banks CE, Goodwin A, Heald CGR, Compton RG (2004) Analyst 130:280

    Article  Google Scholar 

  29. Wantz F, Banks CE, Compton RG (2004) Electroanalysis (in press)

  30. Wantz F, Banks CE, Compton RG (2004) Electroanalysis 17:655

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Compton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, E.R., Banks, C.E. & Compton, R.G. Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine. Anal Bioanal Chem 382, 1169–1174 (2005). https://doi.org/10.1007/s00216-005-3223-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3223-3

Keywords

Navigation