Skip to main content
Log in

Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this critical and timely review, the effects of anisotropic silver nanostructures on the emission intensity and photostability of a key fluorophore that is frequently used in many biological assays is examined. The silver nanostructures consist of triangular, rod-like, and fractal-like nanoparticles of silver deposited on conventional glass substrates. The close proximity to silver nanostructures results in greater intensity and photostability of the fluorophore than for fluorophores solely deposited on glass substrates. These new anisotropic silver nanostructure-coated surfaces show much more favorable effects than silver island films or silver colloid-coated substrates. Subsequently, the use of metal-enhanced fluorescence (MEF) for biosensing applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3A–B
Fig. 4
Fig. 5A–B
Fig. 6
Fig. 7A–B
Fig. 8A–B
Fig. 9A–B
Fig. 10A–B
Fig. 11A–B
Fig. 12

Similar content being viewed by others

References

  1. Lakowicz JR (2001) Anal Biochem 298:1–24

    Article  CAS  PubMed  Google Scholar 

  2. Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Anal Biochem 301:261–277

    Article  CAS  PubMed  Google Scholar 

  3. Lakowicz JR, Shen Y, Gryczynski Z, D’Auria S, Gryczynski I (2001) Biochem Biophys Res Commun 286:875–879

    Article  CAS  PubMed  Google Scholar 

  4. Gryczynski I, Malicka J, Shen Y, Gryczynski Z, Lakowicz JR (2002) J Phys Chem B 106:2191–2195

    CAS  Google Scholar 

  5. Gersten J, Nitzan A (1981) J Chem Phys 75:1139–1152

    Article  CAS  Google Scholar 

  6. Chew H (1987) J Chem Phys 87:1355–1360

    Article  CAS  Google Scholar 

  7. Philpott MR (1975) J Chem Phys 62(5):1812–1817

    Article  CAS  Google Scholar 

  8. Chance RR, Prock A, Silbey R (1978) Adv Chem Phys 37:1–65

    CAS  Google Scholar 

  9. Weitz DA, Garoff S, Gersten JI, Nitzan A (1983) J Chem Phys 78(9):5324–5338

    Article  CAS  Google Scholar 

  10. Geddes CD, Cao H, Gryczynski I, Gryczynski Z, Fang J, Lakowicz JR (2003) J Phys Chem A 107:3443–3449

    Article  CAS  Google Scholar 

  11. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) J Phys Chem B 104(45):10549–10556

    Article  CAS  Google Scholar 

  12. Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) J Phys Chem B 103(45):9846–9853

    Article  CAS  Google Scholar 

  13. Frey W, Woods CK, Chilkoti A (2000) Adv Mater 12(20):1515–1519

    Article  CAS  Google Scholar 

  14. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  15. Jana NR, Gearheart L, Murphy CJ (2001) Chem Commun 7:617–618

    Article  Google Scholar 

  16. Zhu JJ, Liao XH, Zhao XN (2001) Mater Lett 49:91–95

    Article  CAS  Google Scholar 

  17. Xiong YJ, Xie Y, Du GO (2002) Chem Lett 1:98–99

    Article  Google Scholar 

  18. Jana NR, Gearheart L, Murphy CJ (2001) Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  19. Jana NR, Gearheart L, Murphy CJ (2001) Chem Mater 13:2313–2322

    Article  CAS  Google Scholar 

  20. Murphy CJ, Jana NR (2002) Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  21. Jana NR, Gearheart L, Obare SO, Murphy CJ (2002) Langmuir 18:922–927

    Article  CAS  Google Scholar 

  22. Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  23. Sun Y, Mayers B, Xia Y (2003) Nano Lett 3:675–679

    Article  CAS  Google Scholar 

  24. Jin R, Cao C, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Nature 42:487–490

    Google Scholar 

  25. Callegari A, Tonti D, Chergi MP (2003) Nano Lett 3:1565–1568

    Article  CAS  Google Scholar 

  26. Maillard M, Huang P, Brus L (2003) Nano Lett 3:1611–1615

    Article  CAS  Google Scholar 

  27. Taub N, Krichevski O, Markovich G (2003) J Phys Chem B 107:11579–11582

    Article  CAS  Google Scholar 

  28. Wei Z, Mieszawska AJ, Zamborini FP (2004) Langmuir 20:4322–4326

    CAS  Google Scholar 

  29. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) J Phys Chem B 109(8):3157–3162

    Article  CAS  Google Scholar 

  30. Aslan K, Lakowicz JR, Geddes CD (2005) J Phys Chem B 109:6247-6251

    Article  CAS  Google Scholar 

  31. Sevick-Muraca EM, Lopez G, Reynolds JS, Troy TL, Hutchinson CL (1997) Photochem Photobiol 66:55–64

    CAS  PubMed  Google Scholar 

  32. Malicka J, Gryczynski I, Geddes CD, Lakowicz JR (2003) J Biomed Opt 8(3):472–478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH, GM070929-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, K., Lakowicz, J.R. & Geddes, C.D. Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem 382, 926–933 (2005). https://doi.org/10.1007/s00216-005-3195-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3195-3

Keywords

Navigation