Skip to main content
Log in

An immunoassay for a urinary metabolite as a biomarker of human exposure to the pyrethroid insecticide permethrin

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Permethrin is the most popular synthetic pyrethroid insecticide used in agriculture and public health. For the assessment of human exposure to permethrin, a competitive indirect enzyme-linked immunosorbent assay (ELISA) for the detection of the glycine conjugate of a major metabolite, cis-/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (DCCA), of permethrin was developed based on a polyclonal antibody. An assay based on an antibody with a high sensitivity was optimized and characterized. The IC50 value and the detection range for trans-DCCA–glycine, in the assay buffer were 1.2 and 0.2−7.0 μg/L, respectively. The antibody recognized trans-DCCA–glycine and the mixture of cis-/trans-DCCA–glycine with an isomer range from 30:70 to 50:50 nearly equally. Little or no cross-reactivity to permethrin and its other free metabolites or glycine conjugates was measured. The integration of the ELISA and solid-phase extraction which was used to reduce the matrix effect from human urine samples provided for analysis of total cis-/trans-DCCA–glycine at low parts per billion levels in the samples. The limit of quantitation of the target analyte was 1.0 μg/L in urine with a limit of detection of 0.1 μg/L in buffer. This assay might be a useful tool for monitoring human exposure to permethrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gianessi LP, Silvers CS (2001) Trends in crop pesticide use: comparing 1992 and 1997. Florida Agricultural Statistics Service, United States Department of Agriculture., July

  2. Department of Pesticide Regulation (2003) Study 219: monitoring surface waters and sediments of the Salinas and San Joaquin river basins for synthetic pyrethroid pesticides. Department of Pesticide Regulation Environmental Monitoring Branch, Sacramento, CA

  3. Hervé JJ (1985) In: Leahey JP (ed) The pyrethroid insecticides. Taylor and Francis, London, pp 343–425

    Google Scholar 

  4. Casida JE, Ruzo LO (1980) Pestic Sci 11:257–269

    Article  CAS  Google Scholar 

  5. Miyamoto J, Beynon KI, Roberts TR, Hemingway RJ, Swaine H (1981) Pure Appl Chem 53:1967–2022

    Article  Google Scholar 

  6. Schulz J, Schmoldt A, Schulz M (1993) Pharm Ztg 15:9–24

    Google Scholar 

  7. Class T J, Kintrup J (1991) Fresenius’ J Anal Chem 340:446–453

    Article  CAS  Google Scholar 

  8. Heudorf U, Angerer J (2001) Environ Health Perspect 10:213–217

    Article  Google Scholar 

  9. Schettgen T, Heudorf U, Drexler H, Angerer J (2002) Toxicol Lett 134:141–145

    Article  CAS  Google Scholar 

  10. Fricker RD, Reardon E, Spektor DM, Cotton SK, Hawes-Dawson J, Pace JE, Hosek SD (2000) In: Fricker RD, Reardon E, Spektor DM, Cotton SK, Hawes-Dawson J, Pace JE, Hosek SD (eds) Pesticide use during the Gulf War: a survey of Gulf War veterans. National Defense Research Institute, RAND, CA, pp 57–67

    Google Scholar 

  11. US Environmental Protection Agency (1989) Peer review of permethrin. Memo from Esther Rinde, Health Effects Division, to George LaRocca, Registration Division, Office of Pesticides and Toxic Substances. US Environmental Protection Agency, Washington, DC

  12. California Environmental Protection Agency (1992) Permethrin (permanone tick repellent) risk characterization document. Medical Toxicology and Worker Health and Safety Branches, Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA

  13. Go V, Garey J, Wolff MS, Pogo BGT (1999) Environ Health Perspect 107:173–177

    Article  CAS  Google Scholar 

  14. US Environmental Protection Agency (1992) Fed Regist 57

  15. Hale RC, Smith CL (1996) Int J Environ Anal Chem 64:21–33

    Article  CAS  Google Scholar 

  16. He F, Sun J, Han K, Wu Y, Yao P (1988) Br J Ind Med 45:548–551

    CAS  Google Scholar 

  17. He F, Wang S, Liu L, Chen S, Zhang Z, Sun J (1989) Toxicol 63:54–58

    CAS  Google Scholar 

  18. Hallenbeck WH, Cunningham-Burns KM (1985) Pesticides and human health. Springer, Berlin Heidelberg New York, pp 118–120

    Google Scholar 

  19. Repetto R, Baliga SS (1996) In: Repetto R, Baliga SS (eds) Pesticides and the immune system: the public health risks. World Resources Institute, National Center for Food and Agricultural Policy, Washington, DC, pp 39–58

    Google Scholar 

  20. Eadsforth CV, Baldwin MK (1983) Xenobiotica 13:67–72

    Article  CAS  Google Scholar 

  21. Eadsforth CV, Bragt PC, van Sittert NJ (1988) Xenobiotica 18:603–614

    Article  CAS  Google Scholar 

  22. International Agency for Research on Cancer (1991) IARC Monogr 53:251

    Google Scholar 

  23. Fishman WH (1961) In: Fishman WH (ed) Chemistry of drug metabolism. Thomas, Springfield, IL, pp 80–94

    Google Scholar 

  24. Leahey JP (1985) In: Leahey JP (ed) The pyrethroid insecticides. Taylor & Francis, London

    Google Scholar 

  25. Schettgen T, Koch HM, Drexler H, Angerer J (2002) J Chromatogr B 778:121–130

    Article  CAS  Google Scholar 

  26. Ahn KC, Watanabe T, Gee SJ, Hammock BD (2004) J Agric Food Chem 52:4583–4594

    Article  CAS  Google Scholar 

  27. Hutson DH (1979) Prog Drug Metab 3:215–252

    CAS  Google Scholar 

  28. Columé A, Cárdenas S, Gallego M, Valcárcel M (2001) Rapid Commun Mass Spectrom 15:2007–2013

    Article  Google Scholar 

  29. Harris AS, Lucas AD, Krämer PM, Marco M-P, Gee SJ, Hammock BD (1995) In: Kurtz D, Stanker L, Skerritt J (eds) New frontiers in agrochemical immunoanalysis. AOAC International, Arlington, VA, pp 217–236

    Google Scholar 

  30. Jaeger LL, Jones AD, Hammock BD (1998) Chem Res Toxicol 11:342–352

    Article  CAS  Google Scholar 

  31. Leng G, Kuhn KH, Idel H (1997) Sci Total Environ 199:173–181

    Article  CAS  Google Scholar 

  32. Baker SE, Barr DB, Driskell WJ, Beeson MD, Needham LL (2000) J Expo Anal Environ Epidemiol 10:789–798

    CAS  Google Scholar 

  33. Shan G, Wengatz I, Stoutamire DW, Gee SJ, Hammock BD (1999) Chem Res Toxicol 12:1033–1041

    Article  CAS  Google Scholar 

  34. Shan G, Huang H, Stoutamire DW, Gee S J, Leng G, Hammock BD (2004) Chem Res Toxicol 17:218–225

    Article  CAS  Google Scholar 

  35. Voller A, Bidwell DE, Bartlett A (1976) Bull WHO 53:55–65

    CAS  Google Scholar 

  36. Vanderlaan M, Stanker LH, Watkins BE, Petrovic P, Gorbach S (1988) Environ Toxicol Chem 7:859–870

    Article  CAS  Google Scholar 

  37. Lee JK, Ahn KC, Park OS, Ko YK, Kim DW (2002) J Agric Food Chem 50:1791–1803

    Article  CAS  Google Scholar 

  38. Lee JK, Ahn KC, Stoutamire DW, Gee SJ, Hammock BD (2003) J Agric Food Chem 51:3695–3703

    Article  CAS  Google Scholar 

  39. Goodrow MH, Sanborn JR, Stoutamire DW, Gee SJ, Hammock BD (1995) In: Nelson JO, Karu AE, Wang RB (eds) Immunoanalysis of agrochemicals: emerging technologies. ACS symposium series 586. American Chemical Society, Washington, DC

    Google Scholar 

  40. Angerer J, Ritter A (1997) J Chromatogr B 695:217–226

    Article  CAS  Google Scholar 

  41. Strasinger SK, Di Lorenzo MS (2001) In: Strasinger SK, Di Lorenzo MS (eds) Urinalysis and body fluids. Davis, Philadelphia, PA, pp 22–32

    Google Scholar 

  42. Thurman EM, Mills MS (1998) In: Winefordner JD (ed) Solid-phase extraction: principles and practice. Chemical analysis, vol 147. Wiley-Interscience, New York, pp°161–195

    Google Scholar 

  43. Sigma-Aldrich (2002) Reporter 20.3. http://www.sigma-aldrich.com/supelco

  44. Brady JF (1995) In: Nelson JO, Karu AE, Wong RB (eds) Immunoanalysis of agrochemicals: emerging technologies. ACS symposium series 586. American Chemical Society, Washington, DC

Download references

Acknowledgements

This research was supported in part by the NIEHS Superfund Basic Research Program P42 ES04699, the NIEHS Center for Environmental Health Sciences P30 ES05707, the Department of Defense US Army Medical Research and Materiel Command contract DAMD17-01-1-0769, and the NIOSH Center for Agricultural Disease and Research, Education, and Prevention 1 U50 OH07550.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Hammock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, K.C., Ma, SJ., Tsai, HJ. et al. An immunoassay for a urinary metabolite as a biomarker of human exposure to the pyrethroid insecticide permethrin. Anal Bioanal Chem 384, 713–722 (2006). https://doi.org/10.1007/s00216-005-0220-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0220-5

Keywords

Navigation