Skip to main content
Log in

Enhanced sensitivity electrochemical assay of low-molecular-weight heparins using rotating polyion-sensitive membrane electrodes

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Use of a novel rotating polycation-sensitive polymer membrane electrode yields sensors that can serve as simple potentiometric titration endpoint detectors for the determination of three FDA approved low-molecular-weight heparin (LMWH) anticoagulant drugs (Fragmin, Normiflo, and Lovenox). The rotating electrode configuration dramatically improves the reproducibility and increases the sensitivity for LMWH determinations by protamine titration. At a rotation speed of 3000 rpm, electrodes with optimized thin (50 µm) polymer membranes doped with dinonylnaphthalene sulfonate (DNNS) respond to low levels of protamine (<2 µg mL−1) with good precision (±1 mV, N=10), when protamine is infused continuously into a Tris-buffer solution, pH 7.4. When infusing protamine (at 5 µg min−1) continuously into solutions containing Fragmin, a clear endpoint is obtained, with the amount of protamine required to reach this endpoint proportional to the level of Fragmin present. A detection limit of less than 0.02 U mL−1 Fragmin can be obtained via this new method, approximately one order of magnitude lower than that previously reported based on a non-rotating polycation electrode. Similar low detection limits can be achieved for potentiometric titrations of Normiflo and Lovenox. Such titrations can also be carried out in undiluted plasma samples containing the various LMWH species. In this case, detection of the LMWHs at clinically relevant concentrations (>0.2 U mL−1) can be readily achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Ma TS, Hassan SSM (1982) In: Belcher R, Anderson DMW (eds) Organic analysis using ion-selective electrodes, vol 1, methods. Academic Press, New York, USA

  2. Ma TS, Hassan SSM (1982) In: Belcher R, Anderson DMW (eds) Organic analysis using ion-selective electrodes, vol 2, applications and experimental procedures. Academic Press, New York, USA

  3. Cosofret VV, Buck RP (1984) Ion-Selective Electrode Rev 6:59–121

    Google Scholar 

  4. Cosofret VV, Buck RP (1993) Crit Rev Anal Chem 24:1–58

    Google Scholar 

  5. Ma SC, Yang VC, Meyerhoff ME (1992) Anal Chem 64:694–697

    CAS  PubMed  Google Scholar 

  6. Ma SC, Yang VC, Fu B, Meyerhoff ME (1993) Anal Chem 65:2078–2084

    CAS  PubMed  Google Scholar 

  7. Yun JH, Ma SC, Fu B, Yang VC, Meyerhoff ME (1993) Electroanalysis 5:719–724

    CAS  Google Scholar 

  8. Meyerhoff ME, Yang VC, Wahr JA, Lee LM, Yun JH, Fu B, Bakker E (1995) Clin Chem 41:1355

    CAS  Google Scholar 

  9. Meyerhoff ME, Fu B, Bakker E, Yun JH, Yang VC (1996) Anal Chem 68:A168–A175

    Google Scholar 

  10. Fu B, Yun JH, Wahr J, Meyerhoff ME, Yang VC (1996) Adv Drug Delivery Rev 21:215–223

    Article  CAS  Google Scholar 

  11. Wahr JA, Yun JH, Yang VC, Lee LM, Meyerhoff ME (1996) J Cardiothoracic Vasc Anesth 10:447–450

    CAS  Google Scholar 

  12. Baliga N, Yang VC, Meyerhoff ME (1998) Clin Chem 44:A52–A53

    Google Scholar 

  13. Ramamurthy N, Baliga N, Wahr JA, Schaller U, Yang VC, Meyerhoff ME (1998) Clin Chem 44:606–613

    CAS  PubMed  Google Scholar 

  14. Ramamurthy N, Baliga N, Wakefield TW, Andrews PC, Yang VC, Meyerhoff ME (1999) Anal Biochem 266:116–124

    Article  CAS  PubMed  Google Scholar 

  15. Yun JH, Han IS, Chang LC, Ramamurthy N, Meyerhoff ME, Yang VC (1999) Pharm Sci Technol 2:102–110

    Article  CAS  Google Scholar 

  16. Dürüst N, Meyerhoff ME (2001) Anal Chim Acta 432:253–260

    Article  Google Scholar 

  17. Mathison S, Bakker E (1999) Anal Chem (1999) 71:4614–4621

  18. Han IS, Ramamurthy N, Yun JH, Schaller U, Meyerhoff ME, Yang VC (1996) FASEB J 10:1621–1626

    CAS  PubMed  Google Scholar 

  19. Abd-Rabboh HSM, Nevins SA, Dürüst N, Meyerhoff ME (2003) Biosens Bioelectron 18:229–236

    Article  CAS  PubMed  Google Scholar 

  20. Badr IHA, Ramamurthy N, Yang VC, Meyerhoff ME (1997) Anal Biochem 250:74–81

    Article  CAS  PubMed  Google Scholar 

  21. Chang LC, Meyerhoff ME, Yang VC (1999) Anal Biochem 276:8–12

    Article  CAS  PubMed  Google Scholar 

  22. Dai S, Esson JM, Lutze O, Ramamurthy N, Yang VC, Meyerhoff ME (1999) J Pharm Biomed Anal 19:1–14

    Article  CAS  PubMed  Google Scholar 

  23. Dai S, Meyerhoff ME (2001) Electroanalysis 13:276–283

    Article  CAS  Google Scholar 

  24. Esson JM, Ramamurthy N, Meyerhoff ME (2000) Anal Chim Acta 404:83–94

    Article  CAS  Google Scholar 

  25. Fu B, Bakker E, Yang VC, Meyerhoff ME (1995) Macromolecules 28:5834–5840

    CAS  Google Scholar 

  26. Fu B, Bakker E, Yun JH, Yang VC, Meyerhoff ME (1994) Anal Chem 66:2250–2259

    CAS  PubMed  Google Scholar 

  27. Ye QS, Meyerhoff ME (2001) Anal Chem 73:332–336

    Article  CAS  PubMed  Google Scholar 

  28. Hirsh J, Levine MN (1992) Blood 79:1–17

    CAS  PubMed  Google Scholar 

  29. Weitz JI (1997) New Engl J Med 337:688–698

    CAS  PubMed  Google Scholar 

  30. Hirsch J, Raschke R, Warkentin TE, Dalen JE, Deykin D, Poller L (1995) Chest 108:258–275

    Google Scholar 

  31. Warkentin TE, Levine MN, Hirsch J, Horsewood P, Roberts RS, Gent M, Kelton JG (1995) N Engl J Med 332:1330–1335

    Google Scholar 

  32. Buck RP (1982) Ion-Selective Electrode Rev 4:3–74

    Google Scholar 

  33. Xie SL, Cammann K (1987) J Electroanal Chem 229:249–263

    Article  CAS  Google Scholar 

  34. Zhang W, Spichiger UE (2000) Anal Chim Acta 45:2259–2266

    Article  CAS  Google Scholar 

  35. Mathis DE, Buck RP (1979) J Membr Sci 4:379–394

    Article  CAS  Google Scholar 

  36. Dai S (1996) PhD dissertation, University of Michigan

  37. Ramamurthy N (1999) PhD dissertation, University of Michigan

  38. Knobloch JE, Shaklee PN (1997) Anal Biochem 245:231–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from National Institutes of Health grants (EB00784) and a research grant from Medtronic Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Meyerhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, W., Zhang, W., Xiao, K.P. et al. Enhanced sensitivity electrochemical assay of low-molecular-weight heparins using rotating polyion-sensitive membrane electrodes. Anal Bioanal Chem 377, 929–936 (2003). https://doi.org/10.1007/s00216-003-2083-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2083-y

Keywords

Navigation