Skip to main content
Log in

Modular bonding picture for aromatic borometallic molecular wheels

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Borometallic molecular wheel is a special class of clusters with a planar ring of boron atoms surrounding a transition metal center, and its distinctive geometry and atypical electronic structure make this class of clusters an interesting target for theoretical analysis. Previous adaptive natural density partitioning analyses have provided a bonding picture for them. In this work, we take a slightly different perspective on their bonding, by considering such clusters as coordination complexes. We find that these clusters can be understood through a simple modular bonding picture, which could be applied to a number of related complexes/clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wade K (1971) The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J Chem Soc Chem Commun. https://doi.org/10.1039/C29710000792

    Article  Google Scholar 

  2. Welch AJ (2013) The significance and impact of Wade’s rules. Chem Commun 49:3615. https://doi.org/10.1039/c3cc00069a

    Article  CAS  Google Scholar 

  3. Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17:311–319. https://doi.org/10.1021/ar00105a003

    Article  CAS  Google Scholar 

  4. Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  5. Amgoune A, Bourissou D (2010) σ-Acceptor, Z-type ligands for transition metals. Chem Commun 47:859–871. https://doi.org/10.1039/C0CC04109B

    Article  Google Scholar 

  6. Romanescu C, Galeev TR, Li W-L et al (2013) Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. Acc Chem Res 46:350–358. https://doi.org/10.1021/ar300149a

    Article  CAS  PubMed  Google Scholar 

  7. Li W-L, Chen X, Jian T et al (2017) From planar boron clusters to borophenes and metalloborophenes. Nat Rev Chem 1:0071. https://doi.org/10.1038/s41570-017-0071

    Article  CAS  Google Scholar 

  8. Boldyrev AI, Wang L-S (2016) Beyond organic chemistry: aromaticity in atomic clusters. Phys Chem Chem Phys 18:11589–11605. https://doi.org/10.1039/C5CP07465G

    Article  CAS  PubMed  Google Scholar 

  9. Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217. https://doi.org/10.1039/B804083D

    Article  CAS  PubMed  Google Scholar 

  10. Tkachenko NV, Boldyrev AI (2019) Chemical bonding analysis of excited states using the adaptive natural density partitioning method. Phys Chem Chem Phys 21:9590–9596. https://doi.org/10.1039/C9CP00379G

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J-X, Sheong FK, Lin Z (2018) Unravelling chemical interactions with principal interacting orbital analysis. Chem Eur J 24:9639–9650. https://doi.org/10.1002/chem.201801220

    Article  CAS  PubMed  Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB et al. Gaussian~09 Revision D.01

  13. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  14. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  15. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34:1429–1437. https://doi.org/10.1002/jcc.23266

    Article  CAS  PubMed  Google Scholar 

  16. Luo Q (2008) Boron rings containing planar octa-and enneacoordinate cobalt, iron and nickel metal elements. Sci China Ser B Chem 51:607–613. https://doi.org/10.1007/s11426-008-0073-9

    Article  CAS  Google Scholar 

  17. Ito K, Pu Z, Li Q-S, von Schleyer P (2008) Cyclic boron clusters enclosing planar hypercoordinate cobalt, iron, and nickel. Inorg Chem 47:10906–10910. https://doi.org/10.1021/ic800993b

    Article  CAS  PubMed  Google Scholar 

  18. Romanescu C, Galeev TR, Li W-L et al (2011) Aromatic metal-centered monocyclic boron rings: Co©B8 and Ru©B9 . Angew Chem Int Ed 50:9334–9337. https://doi.org/10.1002/anie.201104166

    Article  CAS  Google Scholar 

  19. Li W-L, Romanescu C, Galeev TR et al (2012) Transition-metal-centered nine-membered boron rings: MⓒB9 and MⓒB9 (M = Rh, Ir). J Am Chem Soc 134:165–168. https://doi.org/10.1021/ja209808k

    Article  CAS  PubMed  Google Scholar 

  20. Lein M, Frunzke J, Frenking G (2003) A novel class of aromatic compounds: metal-centered planar cations [Fe(Sb5)]+ and [Fe(Bi5)]+. Angew Chem Int Ed 42:1303–1306. https://doi.org/10.1002/anie.200390336

    Article  CAS  Google Scholar 

  21. Zhai H-J, Alexandrova AN, Birch KA et al (2003) Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed 42:6004–6008. https://doi.org/10.1002/anie.200351874

    Article  CAS  Google Scholar 

  22. Jian T, Li W-L, Chen X et al (2016) Competition between drum and quasi-planar structures in RhB18 : motifs for metallo-boronanotubes and metallo-borophenes. Chem Sci 7:7020–7027. https://doi.org/10.1039/C6SC02623K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Grants Council of Hong Kong (HKUST 16305119 and 16304017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu Kit Sheong or Zhenyang Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheong, F.K., Zhang, JX. & Lin, Z. Modular bonding picture for aromatic borometallic molecular wheels. Theor Chem Acc 139, 14 (2020). https://doi.org/10.1007/s00214-019-2536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2536-9

Keywords

Navigation