Skip to main content
Log in

Dissociation and oxidation mechanism of methanol on Al12N12 cage: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The density functional theory has been used to investigate the methanol adsorption, decomposition and oxidation as well as the water adsorption and decomposition on the clean and Pt-encapsulated Al12N12 cages. It is shown that platinum metal atom can be encapsulated within the Al12N12 cage, thus forming Pt-encapsulated Al12N12 cage electrocatalyst. According to the reaction results, CH3OH and H2O both prefer to be adsorbed on the Al atom top site. The O–H bond scission is the significantly more favorable reaction pathway than C–O bond scission on the cage surface. Furthermore, the structures of the intermediates, transition states and products, the corresponding energy barriers and reaction energies are confirmed. The results also show that the adsorption energies and energy barriers of CH3OH and H2O dissociation are cut down slightly with the aid of the platinum atom. Nevertheless, Pt-encapsulated Al12N12 cage makes the potential energy surface changes smoother than pure Al12N12 cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng FY, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192

    Article  CAS  PubMed  Google Scholar 

  2. Dell RM, Rand DAJ (2001) Energy storage—a key technology for global energy sustainability. J Power Sources 100:2–17

    Article  CAS  Google Scholar 

  3. Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369

    Article  CAS  PubMed  Google Scholar 

  4. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  PubMed  Google Scholar 

  5. Yang J, Sudik A, Wolverton C, Siegel DJ (2010) High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev 39:656–675

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007

    Article  CAS  Google Scholar 

  7. Huber GW, Shabaker JW, Dumesic JA (2003) Raney Ni-Sn catalyst for H-2 production from biomass-derived hydrocarbons. Science 300:2075–2077

    Article  CAS  PubMed  Google Scholar 

  8. Cheng W-H (1995) Deactivation and regeneration of Cu/Cr based methanol decomposition catalysts. Appl Catal B Environ 7:127–136

    Article  CAS  Google Scholar 

  9. Beden B, Léger J-M, Lamy C (1992) Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes, modern aspects of electrochemistry. Springer, New York, pp 97–264

    Google Scholar 

  10. Wang H, He CZ, Huai LY, Liu JY (2013) Decomposition and oxidation of methanol on Ir(111): a first-principles study. J Phys Chem C 117:4574–4584

    Article  CAS  Google Scholar 

  11. Hamnett A (1997) Mechanism and electrocatalysis in the direct methanol fuel cell. Catal Today 38:445–457

    Article  CAS  Google Scholar 

  12. Kandoi S, Greeley J, Sanchez-Castillo MA, Evans ST, Gokhale AA, Dumesic JA, Mavrikakis M (2006) Prediction of experimental methanol decomposition rates on platinum from first principles. Top Catal 37:17–28

    Article  CAS  Google Scholar 

  13. Greeley J, Mavrikakis M (2004) Competitive paths for methanol decomposition on Pt(111). J Am Chem Soc 126:3910–3919

    Article  CAS  PubMed  Google Scholar 

  14. Franaszczuk K, Herrero E, Zelenay P, Wieckowski A, Wang J, Masel R (1992) A comparison of electrochemical and gas-phase decomposition of methanol on platinum surfaces. J Phys Chem 96:8509–8516

    Article  CAS  Google Scholar 

  15. Mei DH, Xu LJ, Henkelman G (2009) Potential energy surface of methanol decomposition on Cu(110). J Phys Chem C 113:4522–4537

    Article  CAS  Google Scholar 

  16. Gu XK, Li WX (2010) First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111). J Phys Chem C 114:21539–21547

    Article  CAS  Google Scholar 

  17. Esrafili MD, Nurazar R (2014) A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage. Superlattice Microstruct 67:54–60

    Article  CAS  Google Scholar 

  18. Esrafili MD, Nurazar R (2014) Potential of C-doped boron nitride fullerene as a catalyst for methanol dehydrogenation. Comput Mater Sci 92:172–177

    Article  CAS  Google Scholar 

  19. Soleymanabadi H, Peyghan AA (2013) Decomposition of methanol on nanosized tube of magnesium oxide: a theoretical study. Comput Mater Sci 79:182–186

    Article  CAS  Google Scholar 

  20. Esrafili MD, Nematollahi P, Nurazar R (2016) A density functional theory study on adsorption and decomposition of acetic acid over silicon carbide nanotubes. Synth Met 215:164–169

    Article  CAS  Google Scholar 

  21. Burghaus U, Bye D, Cosert K, Goering J, Guerard A, Kadossov E, Lee E, Nadoyama Y, Richter N, Schaefer E, Smith J, Ulness D, Wymore B (2007) Methanol adsorption in carbon nanotubes. Chem Phys Lett 442:344–347

    Article  CAS  Google Scholar 

  22. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  23. Toth E, Bolskar RD, Borel A, Gonzalez G, Helm L, Merbach AE, Sitharaman B, Wilson LJ (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 127:799–805

    Article  CAS  PubMed  Google Scholar 

  24. Czochara R, Ziaja P, Piotrowski P, Pokrop R, Litwinienko G (2012) Fullerene C-60 as an inhibitor of high temperature lipid oxidation. Carbon 50:3943–3946

    Article  CAS  Google Scholar 

  25. Gedikpınar M, Çavaş M, Alahmed ZA, Yakuphanoglu F (2013) Electronic properties of Al/p–Si/C70/Au MIS-type diode. Superlattice Microstruct 59:123–132

    Article  CAS  Google Scholar 

  26. Beheshtian J, Behzadi H, Esrafili MD, Shirvani BB, Hadipour NL (2010) A computational study of water adsorption on boron nitride nanotube. Struct Chem 21:903–908

    Article  CAS  Google Scholar 

  27. Esrafili MD, Behzadi H (2013) A DFT study on carbon-doping at different sites of (8,0) boron nitride nanotube. Struct Chem 24:573–581

    Article  CAS  Google Scholar 

  28. Wang Q, Sun Q, Jena P, Kawazoe Y (2009) Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3:621–626

    Article  CAS  PubMed  Google Scholar 

  29. Wu HS, Zhang FQ, Xu XH, Zhang CJ, Jiao HJ (2003) Geometric and energetic aspects of aluminum nitride cages. J Phys Chem A 107:204–209

    Article  CAS  Google Scholar 

  30. Esrafili MD, Nurazar R (2014) Efficient dehydrogenation of formic acid using Al12N12 nanocage: a DFT study. Superlattice Microstruct 75:17–26

    Article  CAS  Google Scholar 

  31. Jiang Z, Fang T (2016) Dissociation mechanism of H2O on clean and oxygen-covered Cu(111) surfaces: a theoretical study. Vacuum 128:252–258

    Article  CAS  Google Scholar 

  32. Niu M, Yu GT, Yang GH, Chen W, Zhao XG, Huang XR (2014) Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg Chem 53:349–358

    Article  CAS  PubMed  Google Scholar 

  33. Xu HX, Zhang M, Chen YY, Liu HL, Xu KJ, Huang XR (1061) The catalytic activity of Pt6 M (M = Pt, Ru, Sn) cluster for methanol partial oxidation. Comput Theor Chem 2015:52–59

    Google Scholar 

  34. Esrafili MD, Nurazar R (2015) Metal-free decomposition of formic acid on pristine and carbon-doped boron nitride fullerene: a DFT study. J Cluster Sci 26:595–608

    Article  CAS  Google Scholar 

  35. Zhang YH, Zheng XZ, Zhang SL, Huang SP, Wang P, Tian HP (2012) Bare and Ni decorated Al12N12 cage for hydrogen storage: a first-principles study. Int J Hydrog Energy 37:12411–12419

    Article  CAS  Google Scholar 

  36. Solimannejad M, Kamalinahad S, Shakerzadeh E (2016) Selective detection of toxic cyanogen gas in the presence of O2, and H2O molecules using a AlN nanocluster. Phys Lett A 380:2854–2860

    Article  CAS  Google Scholar 

  37. Gilani MA, Tabassum S, Gul U, Mahmood T, Alharthi AI, Alotaibi MA, Geesi M, Sheikh R, Ayub K (2018) Copper-doped Al12N12 nano-cages: potential candidates for nonlinear optical materials. Appl Phys A 124:14. https://doi.org/10.1007/s00339-017-1425-0

    Article  CAS  Google Scholar 

  38. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01. Gaussian Inc., Wallingford

    Google Scholar 

  39. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  40. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  42. Shokuhi Rad A, Bagheri Novir S, Mohseni S, Ramezani Cherati N, Mirabi A (2017) A DFT study of O2 and Cl2 adsorption onto Al12N12 fullerene-like nanocluster. Heteroatom Chem 28:e21396

    Article  CAS  Google Scholar 

  43. Tahmasebi E, Shakerzadeh E, Biglari Z (2016) Theoretical assessment of the electro-optical features of the group III nitrides (B12N12, Al12N12 and Ga12N12) and group IV carbides (C24, Si12C12 and Ge12C12) nanoclusters encapsulated with alkali metals (Li, Na and K). Appl Surf Sci 363:197–208

    Article  CAS  Google Scholar 

  44. Tazikeh-Lemeski E (2017) Al12CN11 nano-cage sensitive to NH3 detection: a first-principles study. J Mol Struct 1135:166–173

    Article  CAS  Google Scholar 

  45. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  46. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  47. Soltani A, Raz SG, Taghartapeh MR, Moradi AV, Mehrabian RZ (2013) Ab initio study of the NO2 and SO2 adsorption on Al12N12 nano-cage sensitized with gallium and magnesium. Comput Mater Sci 79:795–803

    Article  CAS  Google Scholar 

  48. Costales A, Blanco MA, Francisco E, Pendas AM, Pandey R (2006) First principles study of neutral and anionic (medium-size) aluminum nitride clusters: AlnNn, n = 7-16. J Phys Chem B 110:4092–4098

    Article  CAS  PubMed  Google Scholar 

  49. Shakerzadeh E, Barazesh N, Talebi SZ (2014) A comparative theoretical study on the structural, electronic and nonlinear optical features of B12N12 and Al12N12 nanoclusters with the groups III, IV and V dopants. Superlattice Microstruct 76:264–276

    Article  CAS  Google Scholar 

  50. Zhou Y-H, Lv P-H, Wang G-C (2006) DFT studies of methanol decomposition on Ni(100) surface: compared with Ni(111) surface. J Mol Catal A Chem 258:203–215

    Article  CAS  Google Scholar 

  51. Vo CT, Huynh LK, Hung JY, Jiang J-C (2013) Methanol adsorption and decomposition on ZnO(1010) surface: a density functional theory study. Appl Surf Sci 280:219–224

    Article  CAS  Google Scholar 

  52. Shan J, Kleyn AW, Juurlink LB (2009) Identification of hydroxyl on Ni(111). ChemPhysChem 10:270–275

    Article  CAS  PubMed  Google Scholar 

  53. Bedürftig K, Völkening S, Wang Y, Wintterlin J, Jacobi K, Ertl G (1999) Vibrational and structural properties of OH adsorbed on Pt(111). J Chem Phys 111:11147–11154

    Article  Google Scholar 

  54. Ma FF, Ma SH, Jiao ZY, Dai XQ (2016) Adsorption and decomposition of H2O on cobalt surfaces: a DFT study. Appl Surf Sci 384:10–17

    Article  CAS  Google Scholar 

  55. Rui W, Wei F, Dandan Z, Huiling L, Huanyu Z, Xuri H (2017) Geometric stability of PtFe/PdFe embedded in graphene and catalytic activity for CO oxidation. Appl Organomet Chem 31:e3808

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 21573090, 21373099, 21403086) and Scientific Research Fund of Jilin Provincial Education Department (2015437) for financial support of this research and Science and technology research project of Jilin Provincial Department of education in 12th Five-Year Plan (No. 388[2011]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Feng, W., Liu, H. et al. Dissociation and oxidation mechanism of methanol on Al12N12 cage: a DFT study. Theor Chem Acc 137, 113 (2018). https://doi.org/10.1007/s00214-018-2292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2292-2

Keywords

Navigation