Skip to main content
Log in

β-In2S3 for photovoltaic devices: investigation of the native point defects with ab initio first-principle calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Herein, we report a theoretical investigation based on DFT calculations devoted to the nature of charge carriers in the β-In2S3 material used as buffer in chalcopyrite thin-film solar cells. Our simulations led to unambiguous results concerning the incapability for this material to be a p-type semiconductor. Furthermore, it is demonstrated that the insertion of indium into a Td interstitial site seems to be the driving force leading to a natural n-type conductivity. Our calculations took into account different atmospheres in order to be directly comparable with experimental data. In particular, the competitive InS structure was considered. It is shown that the S-poor condition strongly lesser the defect formation energy and should be privileged to achieve high free electron concentrations for potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: \(\Delta E_{\text{c}}\)
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Naghavi N, Abou-Ras D, Allsop N et al (2010) Buffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics: present status and current developments. Prog Photovolt Res Appl 18:411–433. https://doi.org/10.1002/pip.955

    Article  CAS  Google Scholar 

  2. Barreau N (2009) Indium sulfide and relatives in the world of photovoltaics. Sol Energy 83:363–371. https://doi.org/10.1016/j.solener.2008.08.008

    Article  CAS  Google Scholar 

  3. Pistor P, Merino Álvarez JM, León M et al (2016) Structure reinvestigation of α-, β- and γ-In 2 S 3. Acta Crystallogr Sect B Str Sci Cryst Eng Mater 72:410–415. https://doi.org/10.1107/s2052520616007058

    Article  CAS  Google Scholar 

  4. Seyam AAES and DAE and HSM and MAM (1998) Electrical properties of beta-In2S3 thin films. J Phys: Condens Matter 10:5943

    Google Scholar 

  5. Péan EV, Barreau N, Vidal J et al (2017) Theoretical investigation of CdIn2S4: a possible substitute for CdS in CuIn1–xGaxSe2-based photovoltaic devices. Phys Rev Mater 1:64605. https://doi.org/10.1103/physrevmaterials.1.064605

    Article  CAS  Google Scholar 

  6. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  7. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  8. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  9. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/physrevb.59.1758

    Article  CAS  Google Scholar 

  10. Rinke P, Janotti A, Scheffler M, Van de Walle CG (2009) Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial. Phys Rev Lett 102:26402. https://doi.org/10.1103/physrevlett.102.026402

    Article  Google Scholar 

  11. Péan E, Vidal J, Jobic S, Latouche C (2017) Presentation of the PyDEF post-treatment python software to compute publishable charts for defect energy formation. Chem Phys Lett 671:124–130. https://doi.org/10.1016/j.cplett.2017.01.001

    Article  CAS  Google Scholar 

  12. Stevanović V, Lany S, Zhang X, Zunger A (2012) Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys Rev B 85:115104. https://doi.org/10.1103/physrevb.85.115104

    Article  Google Scholar 

  13. Lany S, Zunger A (2009) Accurate prediction of defect properties in density functional supercell calculations. Model Simul Mater Sci Eng 17:84002. https://doi.org/10.1088/0965-0393/17/8/084002

    Article  CAS  Google Scholar 

  14. Kumagai Y, Oba F (2014) Electrostatics-based finite-size corrections for first-principles point defect calculations. Phys Rev B 89:195205. https://doi.org/10.1103/physrevb.89.195205

    Article  Google Scholar 

  15. Beaujuge PM, Fréchet JMJ (2011) Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 133:20009–20029

    Article  CAS  PubMed  Google Scholar 

  16. Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened coulomb hybrid functional. J Chem Phys 121:1187–1192

    Article  CAS  PubMed  Google Scholar 

  17. Tao W, Qing G, Yan L, Kuang S (2012) A comparative investigation of an AB-and AA-stacked bilayer graphene sheet under an applied electric field: a density functional theory study. Chin Phys B 21:67301

    Article  CAS  Google Scholar 

  18. Karlický F, Zbořil R, Otyepka M (2012) Band gaps and structural properties of graphene halides and their derivates: a hybrid functional study with localized orbital basis sets. J Chem Phys 137:34709

    Article  CAS  Google Scholar 

  19. Dai J, Zeng XC (2014) Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J Phys Chem Lett 5:1289–1293

    Article  CAS  PubMed  Google Scholar 

  20. Kharche N, Nayak SK (2011) Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett 11:5274–5278

    Article  CAS  PubMed  Google Scholar 

  21. Azpiroz JM, Ugalde JM, Infante I (2014) Benchmark assessment of density functional methods on group II–VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots. J Chem Theory Comput 10:76–89

    Article  CAS  PubMed  Google Scholar 

  22. Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721

    Article  CAS  PubMed  Google Scholar 

  23. Takei K, Chuang S, Fang H et al (2011) Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. Appl Phys Lett 99:103507

    Article  CAS  Google Scholar 

  24. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123:174101

    Article  CAS  PubMed  Google Scholar 

  25. Alkauskas A, Pasquarello A (2011) Band-edge problem in the theoretical determination of defect energy levels: the O vacancy in ZnO as a benchmark case. Phys Rev B 84:125206

    Article  CAS  Google Scholar 

  26. Liao P, Carter EA (2011) Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark. Phys Chem Chem Phys 13:15189–15199

    Article  CAS  PubMed  Google Scholar 

  27. Tongay S, Zhou J, Ataca C et al (2012) Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett 12:5576–5580

    Article  CAS  PubMed  Google Scholar 

  28. García-Fernández P, Ghosh S, English NJ, Aramburu JA (2012) Benchmark study for the application of density functional theory to the prediction of octahedral tilting in perovskites. Phys Rev B 86:144107

    Article  CAS  Google Scholar 

  29. Song J-W, Yamashita K, Hirao K (2011) Communication: a new hybrid exchange correlation functional for band-gap calculations using a short-range Gaussian attenuation (Gaussian-Perdue–Burke–Ernzerhof). J Chem Phys 135:71103

    Article  CAS  Google Scholar 

  30. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  31. Bruneval F, Marques MAL (2012) Benchmarking the starting points of the GW approximation for molecules. J Chem Theory Comput 9:324–329

    Article  CAS  PubMed  Google Scholar 

  32. Lany S, Zunger A (2008) Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys Rev B 78:235104. https://doi.org/10.1103/physrevb.78.235104

    Article  Google Scholar 

  33. Freysoldt C, Neugebauer J, Van de Walle CG (2009) Fully Ab initio finite-size corrections for charged-defect supercell calculations. Phys Rev Lett 102:16402. https://doi.org/10.1103/physrevlett.102.016402

    Article  Google Scholar 

  34. Komsa H-P, Rantala TT, Pasquarello A (2012) Finite-size supercell correction schemes for charged defect calculations. Phys Rev B 86:45112. https://doi.org/10.1103/physrevb.86.045112

    Article  Google Scholar 

  35. Radautsan SI, Syrbu NN, Tezlevan VE et al (1973) Optical and photoelectrical properties and band structure of single crystals of solid solutions of the system (CdS)3x–(In2S3)1 − x. Phys Status Solidi 15:295–302. https://doi.org/10.1002/pssa.2210150133

    Article  CAS  Google Scholar 

  36. Watkins GD Negative-U properties for defects in solids. In: Adv. Solid State Phys. Springer Berlin pp 163–189

  37. Zunger A (2003) Practical doping principles. Appl Phys Lett 83:57–59. https://doi.org/10.1063/1.1584074

    Article  CAS  Google Scholar 

  38. Quéré Y (1988) Physique des matériaux: cours et problèmes. Ellipses, Paris

    Google Scholar 

  39. Sze SM, Kwok NK (2006) Physics of semiconductor devices, 3rd Edition, Wiley. doi: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471143235.html

  40. Hummel RE (2011) Electronic properties of materials. https://doi.org/10.1007/978-1-4419-8164-6

    Article  Google Scholar 

  41. Ghorbani E, Albe K (2018) Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory. J Appl Phys 123:103103. https://doi.org/10.1063/1.5020376

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research used resources of CCIPL (Centre de Calcul Intensif des Pays de Loire). The authors greatly acknowledge ARZEL Ludovic, CALDES Maite, GUILLOT-DEUDON Catherine, HAREL Sylvie, LAFOND Alain and VIDAL Julien for fruitful discussions. A.S. thanks the CNRS and Région Pays de la Loire for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Latouche.

Additional information

Published as part of the special collection of articles “CHITEL 2017 - Paris - France”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoliaroff, A., Barreau, N., Jobic, S. et al. β-In2S3 for photovoltaic devices: investigation of the native point defects with ab initio first-principle calculations. Theor Chem Acc 137, 102 (2018). https://doi.org/10.1007/s00214-018-2273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2273-5

Keywords

Navigation