Skip to main content
Log in

A rigid planar low band gap polymer PTTDPP-DT-DTT for heterojunction solar cell: a study of density functional theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A low band gap polymer, PTTDPP-DT-DTT, was studied using density functional theory and time-dependent density functional theory to obtain geometric structures, frontier molecular orbitals, ionization potentials, electron affinities, optical absorption and charge transfer properties in the application of solar cells. Marcus theory was used to calculate the charge separation and recombination rates of the donor and acceptor (D/A) interfaces [(PTTDPP-DT-DTT)2/PC61BM and (PTTDPP-DT-DTT)2/PC71BM]. It was found that with the increase of the conjugated unit of the polymer, the reorganization energies of holes and electrons are both decreased, indicating that the ability for charge transport is enhanced. For D/A interfaces, (PTTDPP-DT-DTT)2/PC61BM and (PTTDPP-DT-DTT)2/PC71BM have appropriate exciton binding energies, and the rate of charge separation is much faster than the rate of charge recombination. The performance of (PTTDPP-DT-DTT)2/PC61BM is better than that of (PTTDPP-DT-DTT)2/PC71BM in the charge transfer process. Simulation of polymer/fullerene solar cells provides a deep understanding of the relationship between structure and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roes AL, Alsema EA, Blok K, Patel MK (2009) Ex-ante environmental and economic evaluation of polymer photovoltaics. Prog Photovolt 17(6):372–393. https://doi.org/10.1002/pip.891

    Article  CAS  Google Scholar 

  2. Li YZ, Pullerits T, Zhao MY, Sun MT (2011) Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell. J Phys Chem C 115(44):21865–21873. https://doi.org/10.1021/jp2040696

    Article  CAS  Google Scholar 

  3. Yu MD, Zhang LH, Peng Q, Zhao HB, Gao JW (2015) Narrow-band gap Benzodipyrrolidone (BDPD) based donor conjugated polymer: a theoretical investigation. Comput Theor Chem 1055:88–93. https://doi.org/10.1016/j.comptc.2014.12.027

    Article  CAS  Google Scholar 

  4. Yi Y, Coropceanu V, Brédas J-L (2009) Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry. J Am Chem Soc 131(43):15777–15783. https://doi.org/10.1021/ja905975w

    Article  CAS  Google Scholar 

  5. Guldi DM, Prato M (2000) Excited-state properties of C60 fullerene derivatives. Acc Chem Res 33(10):695–703. https://doi.org/10.1021/ar990144m

    Article  CAS  Google Scholar 

  6. Ray A, Bhattacharya S (2017) Photophysical insights behind zinc naphthalocyanine-gold nanoparticle interaction and its effect over supramolecular interaction between zinc napthalocyanine and PyC60 in solution. J Mol Liq 232:188–194. https://doi.org/10.1016/j.molliq.2017.02.009

    Article  CAS  Google Scholar 

  7. Ding QQ, Shi Y, Chen MD, Li H, Yang XZ, Qu YQ, Liang WJ, Sun MT (2016) Ultrafast dynamics of plasmon-exciton interaction of Ag nanowire-graphene hybrids for surface catalytic reactions. Sci Rep 6:10. https://doi.org/10.1038/srep32724

    Article  Google Scholar 

  8. Fang YR, Zhang ZL, Sun MT (2016) High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope. Rev Sci Instrum 87(3):7. https://doi.org/10.1063/1.4943291

    Article  Google Scholar 

  9. Wolf J, Cruciani F, El Labban A, Beaujuge PM (2015) Wide band-gap 3,4-difluorothiophene-based polymer with 7% solar cell efficiency: an alternative to P3HT. Chem Mater 27(12):4184–4187. https://doi.org/10.1021/acs.chemmater.5b01520

    Article  CAS  Google Scholar 

  10. Ari M, Kanat Z, Dincer H (2016) Design, computational screening and synthesis of novel non-peripherally tetra hexylthio-substituted phthalocyanines as bulk heterojunction solar cell materials. Sol Energy 134:1–8. https://doi.org/10.1016/j.solener.2016.04.041

    Article  CAS  Google Scholar 

  11. Kim MJ, Choi JY, An G, Kim H, Kang Y, Kim JK, Son HJ, Lee JH, Cho JH, Kim B (2016) A new rigid planar low band gap PTTDPP-DT-DTT polymer for organic transistors and performance improvement through the use of a binary solvent system. Dyes Pigments 126:138–146. https://doi.org/10.1016/j.dyepig.2015.11.022

    Article  CAS  Google Scholar 

  12. Zhang L, Yu M, Peng Q, Zhao H, Gao J (2015) Molecular design and theoretical investigation on the thieno[3,2-b]thienobis(silolothiophene)-based low band gap donor polymers for efficient polymer solar cell. Mol Simul 42(1):47–55. https://doi.org/10.1080/08927022.2015.1008469

    Article  CAS  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  14. Tolbert LM (1992) Solitons in a box: the organic chemistry of electrically conducting polyenes. Acc Chem Res 25(12):561–568. https://doi.org/10.1021/ar00024a003

    Article  CAS  Google Scholar 

  15. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  16. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  17. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [(1996) Phys Rev Lett 77:3865 ]. Phys Rev Lett 78 (7):1396–1396

  18. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  19. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  Google Scholar 

  20. Cave RJ, Newton MD (1997) Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods. J Chem Phys 106(22):9213–9226. https://doi.org/10.1063/1.474023

    Article  CAS  Google Scholar 

  21. Kjellberg P, He Z, Pullerits T (2003) Bacteriochlorophyll in electric field. J Phys Chem B 107(49):13737–13742. https://doi.org/10.1021/jp035642y

    Article  CAS  Google Scholar 

  22. Deng WQ, Goddard WA (2004) Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J Phys Chem B 108(25):8614–8621. https://doi.org/10.1021/jp0495848

    Article  CAS  Google Scholar 

  23. Sun CF, Qi DW, Li YZ, Yang LP (2015) Tunable spectra and charge transfer process of benzodifurandione-based polymer by sulfur substitution. RSC Adv 5(24):18492–18500. https://doi.org/10.1039/c4ra16147e

    Article  CAS  Google Scholar 

  24. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794. https://doi.org/10.1002/adma.200501717

    Article  CAS  Google Scholar 

  25. Zaboub A, Madi F, Merdes R, Mohamedi M, Nouar L (2016) A combined DFT and experimental study of proline/β-cyclodextrin inclusion complex. J Mol Liq 216:716–723. https://doi.org/10.1016/j.molliq.2016.01.082

    Article  CAS  Google Scholar 

  26. Yang L, Ren AM, Feng JK, Wang JF (2005) Theoretical investigation of optical and electronic property modulations of pi-conjugated polymers based on the electron-rich 3,6-dimethoxy-fluorene unit. J Org Chem 70(8):3009–3020. https://doi.org/10.1021/jo0481102

    Article  CAS  Google Scholar 

  27. Wang LJ, Li T, Shen YX, Song Y (2016) A theoretical study of the electronic structure and charge transport properties of thieno 2,3-b benzothiophene based derivatives. Phys Chem Chem Phys 18(12):8401–8411. https://doi.org/10.1039/c5cp07879b

    Article  CAS  Google Scholar 

  28. Irfan A, Chaudhry AR, Al-Sehemi AG, Al-Asiri MS, Muhammad S, Kalam A (2016) Investigating the effect of acene-fusion and trifluoroacetyl substitution on the electronic and charge transport properties by density functional theory. J Saudi Chem Soc 20(3):336–342. https://doi.org/10.1016/j.jscs.2014.09.009

    Article  CAS  Google Scholar 

  29. Cheng YF, Qi YY, Tang YT, Zheng C, Wan YF, Huang W, Chen RF (2016) Controlling intramolecular conformation through nonbonding interaction for soft-conjugated materials: molecular design and optoelectronic properties. J Phys Chem Lett 7(18):3609–3615. https://doi.org/10.1021/acs.jpclett.6b01695

    Article  CAS  Google Scholar 

  30. Kose ME, Mitchell WJ, Kopidakis N, Chang CH, Shaheen SE, Kim K, Rumbles G (2007) Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. J Am Chem Soc 129(46):14257–14270. https://doi.org/10.1021/ja073455y

    Article  Google Scholar 

  31. Li Y, Sun C, Qi D, Song P, Ma F (2016) Effects of different functional groups on the optical and charge transport properties of copolymers for polymer solar cells. RSC Adv 6(66):61809–61820. https://doi.org/10.1039/c6ra07647e

    Article  CAS  Google Scholar 

  32. Kwon DY, Chang DM, Kim YS (2014) Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes. Mater Res Bull 58:93–96. https://doi.org/10.1016/j.materresbull.2014.04.059

    Article  CAS  Google Scholar 

  33. Li YZ, Qi DW, Song P, Ma FC (2014) Fullerene-based photoactive layers for heterojunction solar cells: structure, absorption spectra and charge transfer process. Materials 8(1):42–56. https://doi.org/10.3390/ma8010042

    Article  CAS  Google Scholar 

  34. Song P, Li YZ, Ma FC, Pullerits T, Sun M (2016) Photoinduced electron transfer in organic solar cells. Chem Rec 16(2):734–753. https://doi.org/10.1002/tcr.201500244

    Article  CAS  Google Scholar 

  35. Cao X, Zhang Q, Zhou K, Yu X, Liu J, Han Y, Xie Z (2016) Improve exciton generation and dissociation by increasing fullerene content in the mixed phase of P3HT/fullerene. Colloids Surf A Physicochem Eng Asp 506:723–731. https://doi.org/10.1016/j.colsurfa.2016.07.048

    Article  CAS  Google Scholar 

  36. Emelianova EV, van der Auweraer M, Bassler H (2008) Hopping approach towards exciton dissociation in conjugated polymers. J Chem Phys 128(22):224709. https://doi.org/10.1063/1.2938088

    Article  CAS  Google Scholar 

  37. Knupfer M (2003) Exciton binding energies in organic semiconductors. Appl Phys A 77(5):623–626. https://doi.org/10.1007/s00339-003-2182-9

    Article  CAS  Google Scholar 

  38. Rand BP, Genoe J, Heremans P, Poortmans J (2007) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovolt 15(8):659–676. https://doi.org/10.1002/pip.788

    Article  CAS  Google Scholar 

  39. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Angew Chem Int Edit 32(8):1111–1121. https://doi.org/10.1002/anie.199311113

    Article  Google Scholar 

  40. Voityuk AA (2006) Estimation of electronic coupling in pi-stacked donor-bridge-acceptor systems: correction of the two-state model. J Chem Phys 124(6):64505. https://doi.org/10.1063/1.2166232

    Article  Google Scholar 

  41. DʼSouza F, Chitta R, Ohkubo K, Tasior M, Subbaiyan NK, Zandler ME, Rogacki MK, Gryko DT, Fukuzumi S (2008) Corrole − fullerene dyads: formation of long-lived charge-separated states in nonpolar solvents. J Am Chem Soc 130(43):14263–14272. https://doi.org/10.1021/ja804665y

    Article  Google Scholar 

  42. Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem Rev 104(11):4971–5003. https://doi.org/10.1021/cr040084k

    Article  CAS  Google Scholar 

  43. Kavarnos GJ, Turro NJ (1986) Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem Rev 86(2):401–449. https://doi.org/10.1021/cr00072a005

    Article  CAS  Google Scholar 

  44. Zhang X, Chi LN, Ji SM, Wu YB, Song P, Han KL, Guo HM, James TD, Zhao JZ (2009) Rational design of d-PeT phenylethynylated-carbazole monoboronic acid fluorescent sensors for the selective detection of alpha-hydroxyl carboxylic acids and monosaccharides. J Am Chem Soc 131(47):17452–17463. https://doi.org/10.1021/ja9060646

    Article  CAS  Google Scholar 

  45. Fu Z, Shen W, He R, Liu X, Sun H, Yin W, Li M (2015) Theoretical studies on the effect of a bithiophene bridge with different substituent groups (R=H, CH3, OCH3 and CN) in donor-[small pi]-acceptor copolymers for organic solar cell applications. Phys Chem Chem Phys 17(3):2043–2053. https://doi.org/10.1039/C4CP04103H

    Article  CAS  Google Scholar 

  46. Yin J, Chaitanya K, Ju X-H (2015) Theoretical investigations of charge carrier transport in organic semiconductors of naphthalene bisimides N-substituted with alkoxyphenyl groups. Can J Chem 93(7):740–748. https://doi.org/10.1139/cjc-2014-0569

    Article  CAS  Google Scholar 

  47. Berlin YA, Hutchison GR, Rempala P, Ratner MA, Michl J (2003) Charge hopping in molecular wires as a sequence of electron-transfer reactions. J Phys Chem A 107(19):3970–3980. https://doi.org/10.1021/jp034225i

    Article  CAS  Google Scholar 

  48. Deng WQ, Sun L, Huang JD, Chai S, Wen SH, Han KL (2015) Quantitative prediction of charge mobilities of pi-stacked systems by first-principles simulation. Nat Protoc 10(4):632–642. https://doi.org/10.1038/nprot.2015.038

    Article  CAS  Google Scholar 

  49. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107(4):926–952. https://doi.org/10.1021/cr050140x

    Article  CAS  Google Scholar 

  50. Troisi A, Orlandi G (2006) Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J Phys Chem A 110(11):4065–4070. https://doi.org/10.1021/jp055432g

    Article  CAS  Google Scholar 

  51. Shuai ZG, Wang LJ, Li QK (2011) Evaluation of charge mobility in organic materials: from localized to delocalized descriptions at a first-principles level. Adv Mater 23(9):1145–1153. https://doi.org/10.1002/adma.201003503

    Article  CAS  Google Scholar 

  52. Lashkari M, Arshadi MR (2004) DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects. Chem Phys 299(1):131–137. https://doi.org/10.1016/j.chemphys.2003.12.019

    Article  CAS  Google Scholar 

  53. Ferrighi L, Frediani L, Cappelli C, Salek P, Agren H, Helgaker T, Ruud K (2006) Density-functional-theory study of the electric-field-induced second harmonic generation (EFISHG) of push-pull phenylpolyenes in solution. Chem Phys Lett 425(4–6):267–272. https://doi.org/10.1016/j.cplett.2006.04.112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (2016M590270), the Heilongjiang Postdoctoral Grant (LBH-Z15002), National Natural Science Foundation of China (Grant Nos. 11404055 and 11374353).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhui Yang or Yuanzuo Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Song, P., Ma, F. et al. A rigid planar low band gap polymer PTTDPP-DT-DTT for heterojunction solar cell: a study of density functional theory. Theor Chem Acc 137, 20 (2018). https://doi.org/10.1007/s00214-018-2195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2195-2

Keywords

Navigation