Skip to main content
Log in

Does DFT+U mimic hybrid density functionals?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This work examines the question of how a Hubbard U correction to a local exchange–correlation functional compares with adding Hartree–Fock exchange to a local functional for both solid-state and molecular properties. We compute a solid-state property, namely the band gap, and thermochemical molecular properties, in particular, main-group bond energies, transition metal–ligand bond energies, and barrier heights, to elucidate whether the DFT+U method mimics hybrid DFT. We find that a calculation with a Hubbard U correction may or may not mimic a hybrid functional—depending on the atom, the subshell, and the property to which it is applied. For band gaps, we find that adding a Hubbard U correction to the valence d orbitals of transition metals increases the band gap, which thereby gets closer to the experimental value, while adding a Hubbard U correction to valence s or p orbitals of main-group elements need not always increase the band gap. For molecular thermochemistry, we find that adding a Hubbard U correction to a local density functional need not have the same effect as adding Hartree–Fock exchange to a local density functional. For example when compared to a DFT calculation with a local exchange-correlation functional, hybrid DFT increases the barrier height in all cases, but DFT+U does not always increase the barrier height. For the band gaps of transition metal monoxides, the Hubbard-corrected results lowered the mean errors significantly and were comparable to what could be achieved with a much more expensive hybrid functional, but for reaction barrier heights and bond energies of molecules, the Hubbard correction was found to lower the mean error by only approximately a kcal/mol. As part of the analysis, we also compare VASP and Gaussian 09 calculations for the same density functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  2. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974

    Article  CAS  Google Scholar 

  3. Kohn W (1999) Rev Mod Phys 71:1253

    Article  CAS  Google Scholar 

  4. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  5. Seidl A, Görling A, Vogl P, Majewski JI, Levy M (1996) Phys Rev B 53:3764

    Article  CAS  Google Scholar 

  6. Hafner J (2008) J Comput Chem 29:2044

    Article  CAS  Google Scholar 

  7. Marsman M, Paier J, Stroppa A, Kresse G (2008) J Phys Condens Matter 20:064201

    Article  CAS  Google Scholar 

  8. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  9. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  10. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  11. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943

    Article  CAS  Google Scholar 

  12. Anisimov VI, Aryasetiawan F, Liechtenstein AI (1997) J Phys Condens Matter 9:767

    Article  CAS  Google Scholar 

  13. Dudarev SL, Liechtenstein AI, Castell MR, Briggs GAD, Sutton AP (1997) Phys Rev B 56:4900

    Article  CAS  Google Scholar 

  14. Rohrbach A, Hafner J, Kresse G (2003) J Phys Condens Matter 15:979

    Article  CAS  Google Scholar 

  15. Mosey NJ, Carter EA (2007) Phys Rev B 76:155123

    Article  Google Scholar 

  16. Mosey NJ, Liao P, Carter EA (2008) J Chem Phys 129:014103

    Article  Google Scholar 

  17. Himmetoglu B, Floris A, de Gironcoli S, Cococcioni M (2014) Int J Quantum Chem 114:14

    Article  CAS  Google Scholar 

  18. Kulik HJ (2015) J Chem Phys 142:240901

    Article  Google Scholar 

  19. Hubbard J (1964) Proc R Soc Lond Ser A 277:455

    Article  Google Scholar 

  20. Ivády V, Armiento R, Szász K, Janzén E, Gali A, Abrikosov IA (2014) Phys Rev B 90:035146

  21. Carter EA (2008) Science 321:800

    Article  CAS  Google Scholar 

  22. Cococcioni M, de Gironcoli M (2005) Phys Rev B 71:035105

    Article  Google Scholar 

  23. Adamo C, Barone VJ (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  24. Verma P, Maurice R, Truhlar DG (2016) J Phys Chem C 120:9933

    Article  CAS  Google Scholar 

  25. Borycz J, Paier J, Verma P, Darago LE, Xiao DJ, Truhlar DG, Long JR, Gagliardi L (2016) Inorg Chem 55:4924

    Article  CAS  Google Scholar 

  26. Huang S, Wilson B, Wang B, Fang Y, Buffington K, Stein A, Truhlar DG (2015) J Am Chem Soc 137:10992

    Article  CAS  Google Scholar 

  27. Huang S, Wilson B, Smyrl WH, Truhlar DG, Stein A (2016) Chem Mater 28:746

    Article  CAS  Google Scholar 

  28. Heyd J, Scuseria GE (2004) J Chem Phys 120:7274

    Article  CAS  Google Scholar 

  29. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) J Chem Phys 123:174101

    Article  Google Scholar 

  30. Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219901

    Article  Google Scholar 

  31. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyan JG (2006) J Chem Phys 125:249901

    Article  Google Scholar 

  32. Yu HS, Zhang W, Verma P, He X, Truhlar DG (2015) Phys Chem Chem Phys 17:12146

    Article  CAS  Google Scholar 

  33. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmüller J (1996) Phys Rev B Condens Matter Mater Phys 54:11169

    Article  CAS  Google Scholar 

  35. Duanmu K, Luo S, Truhlar DG Minnesota-VASP functional module (MN-VFM—version 3.0). See http://comp.chem.umn.edu/mn-vfm/ for details

  36. Peverati R, Truhlar DG (2012) J Chem Theory Comput 8:2310

    Article  CAS  Google Scholar 

  37. Roth WL (1958) Phys Rev 110:1333

    Article  CAS  Google Scholar 

  38. Terakura K, Williams AR, Oguchi T, Kübler J (1984) Phys Rev Lett 52:1830

    Article  CAS  Google Scholar 

  39. Shih B-C, Abtew TA, Yuan X, Zhang W, Zhang P (2012) Phys Rev B 86:165124

    Article  Google Scholar 

  40. Schrön A, Rödl C, Bechstedt F (2012) Phys Rev B 86:115134

    Article  Google Scholar 

  41. Yan J, Nørskov JK (2013) Phys Rev B 88:245204

    Article  Google Scholar 

  42. Sakuma R, Aryasetiawan F (2013) Phys Rev B 87:165118

    Article  Google Scholar 

  43. Zhao Y, Truhlar DG (2009) J Chem Phys 130:074103

    Article  Google Scholar 

  44. Peverati R, Truhlar DG (2012) J Chem Phys 136:134704

    Article  Google Scholar 

  45. Matz R, Luth H (1979) Appl Phys 18:123

    Article  CAS  Google Scholar 

  46. Tran F, Blaha P, Schwarz K, Novák P (2006) Phys Rev B 74:155108

    Article  Google Scholar 

  47. Parmigiani F, Sangaletti L (1999) J Electron Spectrosc Relat Phenom 98–99:287

    Article  Google Scholar 

  48. Schrön A (1983) Dr. rer. nat. dissertation. http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-32062/Diss/Diss_PDFA.pdf

  49. Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:8996

    Article  CAS  Google Scholar 

  50. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  Google Scholar 

  51. Carlson RK, Li Manni G, Sonnenberger AL, Truhlar DG, Gagliardi L (2015) J Chem Theory Comput 11:82

    Article  CAS  Google Scholar 

  52. Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127

    Article  CAS  Google Scholar 

  53. Peverati R, Truhlar DG (2014) Philos Trans R Soc A 372:20120476

    Article  Google Scholar 

  54. Zhang W, Truhlar DG, Tang M (2013) J Chem Theory Comput 9:3965

    Article  CAS  Google Scholar 

  55. Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43

    Article  CAS  Google Scholar 

  56. Zhao Y, Gonzaĺez-Garcıá N, Truhlar DG (2005) J Phys Chem A 109:2012

    Article  CAS  Google Scholar 

  57. Zheng J, Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:808

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Kudin YN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 Rev. C01. Gaussian Inc., Wallingford

    Google Scholar 

  59. Zhao Y, Peverati R, Luo S, Yang KR, He X, Yu HS, Truhlar DG Minnesota-Gaussian functional module (MN-GFM, version 6.5). See http://comp.chem.umn.edu/mn-gfm/ for details

  60. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  61. Kudin K, Scuseria GE (2000) Phys Rev B 61:16440

    Article  CAS  Google Scholar 

  62. Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384

    Article  CAS  Google Scholar 

  63. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  64. Zheng J, Xu X, Truhlar DG (2011) Theor Chem Acc 128:295

    Article  CAS  Google Scholar 

  65. Papajak E, Truhlar DG (2011) J Chem Theory Comput 7:10

    Article  CAS  Google Scholar 

  66. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) J Chem Theory Comput 8:527

    Article  CAS  Google Scholar 

  67. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Article  CAS  Google Scholar 

  68. Duanmu K, Wang B, Marenich AV, Cramer CJ, Truhlar DG (2015) CM5PAC. University of Minnesota, Minneapolis

    Google Scholar 

  69. Dudarev SL, Botton GA, Savroasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  70. Blöchl PE (1994) Phys Rev B Condens Matter Mater Phys 50:17953

    Article  Google Scholar 

  71. Kresse G, Joubert D (1999) Phys Rev B Condens Matter Mater Phys 59:1758

    Article  CAS  Google Scholar 

  72. Manz TA Chargemol program for performing DDEC analysis, version 2.2 beta, May 25, 2013. ddec.sourceforge.net

  73. Da Silva JLF, Ganduglia-Pirovano MV, Sauer J, Bayer V, Kresse G (2007) Phys Rev B Condens Matter Mater Phys 75:045121

    Article  Google Scholar 

  74. Singh V, Kosa M, Majhi K, Major DT (2015) J Chem Theory Comput 11:64

    Article  CAS  Google Scholar 

  75. Bui VQ, Pham T-T, Le DA, Thi CM, Le HM (2015) J Phys Condens Matter 27:305005

    Article  Google Scholar 

  76. Xu Z, Joshi YV, Raman S, Kitchin JR (2015) J Chem Phys 142:144701

    Article  Google Scholar 

  77. Iwaszuk A, Nolan M (2011) J Phys Chem C 115:12995

    Article  CAS  Google Scholar 

  78. Zakrzewski T, Boguslawski P (2016) J Alloys Compd 664:565

    Article  CAS  Google Scholar 

  79. Yang Y, Sugino O, Ohno T (2012) AIP Adv 2:022172

    Article  Google Scholar 

  80. Li W, Walther CFJ, Kuc A, Heine T (2013) J Chem Theory Comput 9:2950

    Article  CAS  Google Scholar 

  81. Chen J, Wu X, Selloni A (2011) Phys Rev B Condens Matter Mater Phys 83:245204

    Article  Google Scholar 

  82. Franchini C, Bayer V, Podloucky R, Paier J, Kresse G (2005) Phys Rev B Condens Matter Mater Phys 72:045132

    Article  Google Scholar 

  83. Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008) J Chem Phys 129:154113

    Article  Google Scholar 

  84. Perdew JP, Wang Y (1992) Phys Rev B 45:244

    Article  Google Scholar 

  85. Essenberger F, Sharma S, Dewhurst JK, Bersier C, Cricchio F, Nordström L, Gross EKU (2011) Phys Rev B 84:174425

    Article  Google Scholar 

  86. Pickett WE, Erwin SC, Ethridge EC (1998) Phys Rev B 58:1201

    Article  CAS  Google Scholar 

  87. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2010) Phys Rev B 82:045108

    Article  Google Scholar 

  88. Paier J, Hirschl R, Marsman M, Kresse G (2005) J Chem Phys 122:234102

    Article  Google Scholar 

  89. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  90. Woon DE, Dunning TH Jr (1994) J Chem Phys 100:2975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kaining Duanmu, Shuping Huang, Georg Kresse, and Haoyu Yu for helpful discussions. This work was supported by the Nanoporous Materials Genome Center funded by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under award DE-FG02-12ER16362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald G. Truhlar.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Truhlar, D.G. Does DFT+U mimic hybrid density functionals?. Theor Chem Acc 135, 182 (2016). https://doi.org/10.1007/s00214-016-1927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1927-4

Keywords

Navigation