Skip to main content
Log in

Band gap and oxygen vacancy diffusion of anatase (101) surface: the effect of strain

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The effects of strain on the band gap and oxygen vacancy diffusion are investigated for the anatase (101) surface through density functional theory calculations. The results show that biaxial strain can effectively shift the band edge of the surface; for example, tensile strain gently reduces the band gap. With respect to the subsurface-to-surface diffusion of oxygen vacancy, energy barrier has a significant dependence on strain. As strain increases, it facilitates O-vacancy diffusion at the clean surface but hinders this migration for the reduced surface in the presence of water. Analysis based on the water adsorption energy indicates that the interplay between O-vacancy and water is weakened with increasing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang D et al (2009) ACS Nano 3:907–914

    Article  CAS  Google Scholar 

  2. Han F et al (2009) Appl Catal A 359:25–40

    Article  CAS  Google Scholar 

  3. Fujishima A (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  4. Daghrir R, Drogui P, Robert D (2013) Ind Eng Chem Res 52:3581–3599

    CAS  Google Scholar 

  5. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  6. Zhang Y et al (2010) ACS Nano 4:7303–7314

    Article  CAS  Google Scholar 

  7. Xiang Q, Yu J, Jaroniec M (2012) J Am Chem Soc 134:6575–6578

    Article  CAS  Google Scholar 

  8. Henderson MA (2002) Surf Sci Rep 46:1–308

    Article  CAS  Google Scholar 

  9. Yang HG et al (2008) Nature 453:638–641

    Article  CAS  Google Scholar 

  10. Yu J et al (2014) J Am Chem Soc 136:8839–8842

    Article  CAS  Google Scholar 

  11. De Angelis F et al (2014) Chem Rev 114:9708–9753

    Article  Google Scholar 

  12. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63:155409

    Article  Google Scholar 

  13. Sanches F et al (2014) Phys Rev B 89:245309

    Article  Google Scholar 

  14. Selçuk S, Selloni A (2014) J Chem Phys 141:084705

    Article  Google Scholar 

  15. Chen J et al (2013) J Am Chem Soc 135:18774–18777

    Article  CAS  Google Scholar 

  16. Portillo-Vélez N et al (2013) Surf Sci 616:115–119

    Article  Google Scholar 

  17. Labat F, Baranek P, Adamo C (2008) J Chem Theory Comput 4:341–352

    Article  CAS  Google Scholar 

  18. Vittadini A et al (1998) Phys Rev Lett 81:2954

    Article  CAS  Google Scholar 

  19. Sorescu DC et al (2011) J Chem Phys 134:104707

    Article  Google Scholar 

  20. Lozovoi A et al (2014) J Chem Phys 141:044504

    Article  CAS  Google Scholar 

  21. Liu L et al (2013) ChemPhysChem 14:996–1002

    Article  CAS  Google Scholar 

  22. Linh NH et al (2015) Surf Sci 633:38–45

    Article  Google Scholar 

  23. Zhang X et al (2014) Sci Rep 4:4762

    Google Scholar 

  24. Vittadini A, Selloni A (2002) J Chem Phys 117:353–361

    Article  CAS  Google Scholar 

  25. Darkins R et al (2014) Phys Chem Chem Phys 16:9441–9447

    Article  CAS  Google Scholar 

  26. Thulin L, Guerra J (2008) Phys Rev B 77:195112

    Article  Google Scholar 

  27. Yin W-J et al (2010) Appl Phys Lett 96:221901

    Article  Google Scholar 

  28. Aschauer U et al (2009) J Phys Chem C 114:1278–1284

    Article  Google Scholar 

  29. Setvín M et al (2013) Science 341:988–991

    Article  Google Scholar 

  30. Li Y, Gao Y (2014) Phys Rev Lett 112:206101

    Article  Google Scholar 

  31. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  33. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  34. Giannozzi P et al (2009) J Phys Condens Matter 21:395502

    Article  Google Scholar 

  35. Landmann M, Rauls E, Schmidt W (2012) J Phys Condens Matter 24:195503

    Article  CAS  Google Scholar 

  36. Martsinovich N, Jones DR, Troisi A (2010) J Phys Chem C 114:22659–22670

    Article  CAS  Google Scholar 

  37. Sasaki T (2002) J Phys Condens Matter 14:10557

    Article  CAS  Google Scholar 

  38. Shibata T, Irie H, Hashimoto K (2003) J Phys Chem B 107:10696–10698

    Article  CAS  Google Scholar 

  39. Shu D-J et al (2008) Phys Rev Lett 101:116102

    Article  Google Scholar 

  40. Simpson J et al (2004) Phys Rev B 69:193205

    Article  Google Scholar 

  41. Cheng H, Selloni A (2009) Phys Rev B 79:092101

    Article  Google Scholar 

  42. Setvin M et al (2014) Phys Rev Lett 113:086402

    Article  Google Scholar 

  43. He Y et al (2009) Nat Mater 8:585–589

    Article  CAS  Google Scholar 

  44. Finazzi E et al (2008) J Chem Phys 129:220–228

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by AFOSR (FA9550-12-1-0159). We also acknowledge support from DARPA (W91CRB-11-C-0112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu or Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hao, F., Liu, C. et al. Band gap and oxygen vacancy diffusion of anatase (101) surface: the effect of strain. Theor Chem Acc 135, 171 (2016). https://doi.org/10.1007/s00214-016-1916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1916-7

Keywords

Navigation