Skip to main content
Log in

Photophysical properties prediction of selenium- and tellurium-substituted thymidine as potential UVA chemotherapeutic agents

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory and time-dependent density functional theory calculation for a series of photophysical properties (absorption spectra, singlet and triplet excitation energies and spin–orbit matrix elements) have been performed on the sulfur-, selenium- and tellurium-substituted thymine. The heavy atoms have been substituted in 2 or 4 and in both 2,4 position of the thymine ring. Different pathways for the population of the lowest triplet state have been considered. We find that all the considered systems are potential UVA chemotherapeutic agents since the lowest triplet states lie above the energy required for the production of the highly cytotoxic 1 Δ g excited oxygen molecule and due to the possible and efficient intersystem crossings ensured by high spin–orbit coupling values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ackroyd R, Kelty C, Brown N, Reed M (2001) Photochem Photobiol 74:656

    Article  CAS  Google Scholar 

  2. Dougherty TJ (1983) Photochem Photobiol 38:377

    Article  CAS  Google Scholar 

  3. Dennis EJ, Dolmans GJ, Fukumura D, Jain RK (2003) Nat Rev Cancer 3:381

    Google Scholar 

  4. Robertson CA, Evans DH, Abrahamse H (2009) J Photochem Photobiol B Biol 96:1

    Article  CAS  Google Scholar 

  5. Juzeniene A, Peng Q, Moan J (2007) Photochem Photobiol Sci 6:1234

    Article  CAS  Google Scholar 

  6. Yanoa S, Hirohara S, Obata M, Hagiya Y, Ogura S, Ikeda A, Kataoka H, Tanaka M, Joh T (2011) J Photochem Photobiol C 12:46

    Article  Google Scholar 

  7. Castano AP, Demidova TN, Hamblin MR (2004) Photodiagn Photodyn Ther 1:279

    Article  CAS  Google Scholar 

  8. Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Chem Rev 105:2647

    Article  Google Scholar 

  9. Herzberg G (1950) In: Van Nostrand D Company (ed) Spectra of diatomic molecules, 2nd edn. New York

  10. Kuramochi H, Kobayashi T, Suzuki T, Ichimura T (2010) J Phys Chem B 114:8782

    Article  CAS  Google Scholar 

  11. Harada Y, Okabe C, Kobayashi T, Suzuki T, Ichimura T, Nishi N, Xu YZ (2010) J Phys Chem Lett 1:480

    Article  CAS  Google Scholar 

  12. Reichardt C, Crespo-Hernandez CE (2010) J Phys Chem Lett 1:2239

    Article  CAS  Google Scholar 

  13. Pollum M, Jockusch S, Crespo-Hernández CE (2014) J Am Chem Soc 136:17930

    Article  CAS  Google Scholar 

  14. Cui G, Thiel W (2014) J Phys Chem Lett 5:2682

    Article  CAS  Google Scholar 

  15. Cui G, Fang W (2013) J Chem Phys 138:044315

    Article  Google Scholar 

  16. Pollum M, Crespo-Hernández CE (2014) J Chem Phys 140:071101

    Article  Google Scholar 

  17. Sheng J, Huang Z (2010) Chem Biodivers 7:753

    Article  CAS  Google Scholar 

  18. Jiang J, Sheng J, Carrasco N, Huang Z (2007) Nucleic Acids Res 35:477

    Article  CAS  Google Scholar 

  19. Sheng J (2009) Synthesis, structure and function studies of selenium and tellurium derivatized nucleic acids. Dissertation, Georgia State University. http://scholarworks.gsu.edu/chemistry_diss/30

  20. Jacquemin D, Perpete EA, Ciofini I, Adamo C (2009) Acc Chem Res 42:326

    Article  CAS  Google Scholar 

  21. Eriksson ESE, Eriksson LA (2011) Phys Chem Chem Phys 13:7207

    Article  CAS  Google Scholar 

  22. Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845

    Article  CAS  Google Scholar 

  23. Alberto ME, Mazzone G, Quartarolo AD, Fortes Ramos Sousa F, Sicilia E, Russo N (2014) J Comput Chem 35:2107

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao NakaiH, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Wallingford

    Google Scholar 

  25. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  26. Alberto ME, Marino T, Quartarolo AD, Russo N (2013) Phys Chem Chem Phys 15:16167

    Article  CAS  Google Scholar 

  27. Alberto ME, Iuga C, Quartarolo AD, Russo N (2013) J Chem Inf Model 53:2334

    Article  CAS  Google Scholar 

  28. Mazzone G, Russo N, Sicilia E (2013) Can J Chem 91:902

    Article  CAS  Google Scholar 

  29. Cossi M, Barone V (2000) J Chem Phys 112:2427

    Article  CAS  Google Scholar 

  30. Ruud K, Schimmelpfennig B, Ågren H (1999) Chem Phys Lett 310:215

    Article  CAS  Google Scholar 

  31. (2011) DALTON, a molecular electronic structure program. http://daltonprogram.org/

  32. Vahtras O, Ågren H, Jørgensen P, Jensen HJA, Helgaker T, Olsen J (1992) J Chem Phys 96:2118

    Article  CAS  Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  35. Zhang X, Xu YZ (2011) Molecules 16:5655

    Article  CAS  Google Scholar 

  36. Caton-Williams J, Huang Z (2008) Angew Chem Int Ed 47:1723

    Article  CAS  Google Scholar 

  37. Alberto ME, De Simone BC, Mazzone G, Quartarolo AD, Russo N (2014) J Chem Theory Comput 10:4006

    Article  CAS  Google Scholar 

  38. Alberto ME, De Simone BC, Mazzone G, Marino T, Russo N (2015) Dyes Pigment 120:335

    Article  CAS  Google Scholar 

  39. El-Sayed MA (1962) J Chem Phys 36:573

    Article  CAS  Google Scholar 

  40. El-Sayed MA (1963) J Chem Phys 38:2834

    Article  CAS  Google Scholar 

  41. Kasha M (1950) Discuss Faraday Soc 9:14

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Universita della Calabria and FP7-PEOPLE-2011-IRSES, Project No. 295172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nino Russo.

Additional information

Published as part of the special collection of articles “Health and Energy from the Sun”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirillo, J., De Simone, B.C. & Russo, N. Photophysical properties prediction of selenium- and tellurium-substituted thymidine as potential UVA chemotherapeutic agents. Theor Chem Acc 135, 8 (2016). https://doi.org/10.1007/s00214-015-1744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1744-1

Keywords

Navigation