Skip to main content
Log in

Theoretical study of dibenzyl disulfide adsorption on Cu7 cluster as a first approximation to sulfur-induced copper corrosion process

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The adsorption of dibenzyl disulfide (DBDS) on a pentagonal bipyramid Cu 7 cluster was investigated by using density functional calculations, from energetic and electronic viewpoints. The resulting complexes are mainly driven by Cu···S interaction, and an extra stabilization can be conferred by a secondary π···Cu weak interaction. They were classified as physi- or chemisorption according to their binding energy, and by applying a distortion/interaction decomposition model. Disulfide bond dissociation was observed in the most stable complexes, which includes higher distortion energy. From an electronic viewpoint, an electronic flow from copper to DBDS was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barlow SM, Raval R (2003) Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf Sci Rep 50:201–341

    Article  CAS  Google Scholar 

  2. Tumiatti V, Maina R, Scatiggio F, Pompili M, Bartnikas R (2008) In: Service reduction of corrosive sulfur compounds in insulating mineral oils, conference record of the 2008 IEEE international symposium on electrical insulation, pp 284–286

  3. Lukic JM, Milosavljevic SB, Orlovic AM (2010) Degradation of the insulating system of power transformers by copper sulfide deposition: influence of oil oxidation and presence of metal passivator. Ind Eng Chem Res 49:9600–9608

    Article  CAS  Google Scholar 

  4. Toyama S, Tanimura J, Yamada N, Nagao E, Amimoto T (2009) Highly sensitive detection method of dibenzyl disulfide and the elucidation of the mechanism. IEEE Trans Dielectr Electr Insul 16:509–515

    Article  CAS  Google Scholar 

  5. Ahmed Khan F, Sundara Rajan J, Ansari MZ, Shassadi Asra P (2012) An experimental study on the effects of DBDS in transformer oil of power transformers. In: 2012 International conference on advances in power conversion and energy technologies (APCET), pp 1–4

  6. Oweimreen GA, Jaber AMY, Abulkibash AM, Mehanna NA (2012) The depletion of dibenzyl disulfide from a mineral transformer insulating oil. IEEE Trans Dielectr Electr Insul 19:1962–1970

    Article  CAS  Google Scholar 

  7. Maina R, Tumiatti V, Pompili M, Bartnikas R (2009) Corrosive sulfur effects in transformer oils and remedial procedures. IEEE Trans Dielectr Electr Insul 16:1655–1663

    Article  CAS  Google Scholar 

  8. Tielens F, Humblot V, Pradier C-M (2008) Exploring the reactivity of mixed ω-functionalized undecanethiol self-assembled monolayers—A DFT study. Int J Quantum Chem 108:1792–1795

    Article  CAS  Google Scholar 

  9. Tielens F, Humblot V, Pradier CM, Calatayud M, Illas F (2009) Stability of binary SAMs formed by omega-acid and alcohol functionalized thiol mixtures. Langmuir 25:9980–9985

    Article  CAS  Google Scholar 

  10. Tielens F, Santos E (2010) AuS and SH bond formation/breaking during the formation of alkanethiol SAMs on Au(111): a theoretical study. J Phys Chem C 114:9444–9452

    Article  CAS  Google Scholar 

  11. Luque NB, Santos E, Andres J, Tielens F (2011) Effect of coverage and defects on the adsorption of propanethiol on Au(111) surface: a theoretical study. Langmuir 27:14514–14521

    Article  CAS  Google Scholar 

  12. Lammers U, Borstel G (1994) Electronic and atomic structure of copper clusters. Phys Rev B 49:17360–17377

    Article  Google Scholar 

  13. Triguero L, Wahlgren U, Boussard P, Siegbahn P (1995) Calculations of hydrogen chemisorption energies on optimized copper clusters. Chem Phys Lett 237:550–559

    Article  CAS  Google Scholar 

  14. Crispin X, Bureau C, Geskin V, Lazzaroni R, Brédas J-L (1999) Local density functional study of copper clusters: a comparison between real clusters, model surface clusters, and the actual metal surface. Eur J Inorg Chem 1999:349–360

    Article  Google Scholar 

  15. Guvelioglu G, Ma P, He X, Forrey R, Cheng H (2005) Evolution of small copper clusters and dissociative chemisorption of hydrogen. Phys Rev Lett 94:026103

    Article  Google Scholar 

  16. Poater A, Duran M, Jaque P, Toro-Labbé A, Solà M (2006) Molecular structure and bonding of copper cluster monocarbonyls CunCO (n = 1–9). J Phys Chem B 110:6526–6536

    Article  CAS  Google Scholar 

  17. Sukrat K, Parasuk V (2007) Importance of hydrogen bonds to stabilities of copper–water complexes. Chem Phys Lett 447:58–64

    Article  CAS  Google Scholar 

  18. Padilla-Campos L (2008) Theoretical study of the adsorption of carbon monoxide on small copper clusters. J Mol Struct (Thoechem) 851:15–21

    Article  CAS  Google Scholar 

  19. Chen L, Zhang Q, Zhang Y, Li WZ, Han B, Zhou C, Wu J, Forrey RC, Garg D, Cheng H (2010) A first principles study of water dissociation on small copper clusters. Phys Chem Chem Phys 12:9845–9851

    Article  CAS  Google Scholar 

  20. Stenlid JH, Johansson AJ, Brinck T (2014) Searching for the thermodynamic limit—a DFT study of the step-wise water oxidation of the bipyramidal Cu7 cluster. Phys Chem Chem Phys 16:2452–2464

    Article  CAS  Google Scholar 

  21. Reiher M (2003) DFT calculations on transition metal complexes: prospects and obstacles. In: Proceedings of SFB-symposium on redoxactive metal complexes—control of reactivity via molecular architecture, Erlangen, Germany, pp 6087–6087

  22. Siegbahn PEM (2006) The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes. JBIC J Biol Inorg Chem 11:695–701

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  24. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816

    Article  CAS  Google Scholar 

  25. Yepes D, Seidel R, Winter B, Blumberger J, Jaque P (2014) Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti–Cu) in aqueous solution. J Phys Chem B 118:6850–6863

    Article  CAS  Google Scholar 

  26. Tielens F, Andrés J, Chau TD, de Bocarmé TV, Kruse N, Geerlings P (2006) Molecular oxygen adsorption on electropositive nano gold tips. Chem Phys Lett 421:433–438

    Article  CAS  Google Scholar 

  27. Tielens F, Saeys M, Tourwé E, Marin GB, Hubin A, Geerlings P (2002) An ab initio study of the interaction of SCN-with a silver electrode: the prediction of vibrational frequencies. J Phys Chem A 106:1450–1457

    Article  CAS  Google Scholar 

  28. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  29. Hellweg A, Hättig C, Höfener S, Klopper W (2007) Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theoret Chem Acc 117:587–597

    Article  CAS  Google Scholar 

  30. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  31. MJ Frisch, Trucks GW, Schlegel HB, Scuseria GE, RobbMA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian Inc., Gaussian 09, Revision C.01 (2009)

  32. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies, Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  33. Bickelhaupt FM (1999) Understanding reactivity with Kohn–Sham molecular orbital theory: E2–SN2 mechanistic spectrum and other concepts. J Comput Chem 20:114–128

    Article  CAS  Google Scholar 

  34. Ess DH, Houk KN (2007) Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity. J Am Chem Soc 129:10646–10647

    Article  CAS  Google Scholar 

  35. Scaranto J, Mallia G, Harrison NM (2011) An efficient method for computing the binding energy of an adsorbed molecule within a periodic approach. The application to vinyl fluoride at rutile TiO2(110) surface. Comput Mater Sci 50:2080–2086

    Article  CAS  Google Scholar 

  36. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  37. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  38. Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Electron localization in solid-state structures of the elements—the diamond structure. Angew Chem Int Ed Engl 31:187–188

    Article  Google Scholar 

  39. Savin A, Becke AD, Flad J, Nesper R, Preuss H, von Schnering HG (1991) A new look at electron localization. Angew Chem Int Ed Engl 30:409–412

    Article  Google Scholar 

  40. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686

    Article  CAS  Google Scholar 

  41. Noury XKS, Fuster F, Silvi B (1997) TopMod Package, Universite Pierre et Marie Curie

  42. Flükiger HPLP, Portmann S, Weber J (2000) Molekel 4.0, Swiss Center for Scientific Computing, Manno (Switzerland)

  43. Jiang M, Zeng Q, Zhang T, Yang M, Jackson KA (2012) Icosahedral to double-icosahedral shape transition of copper clusters. J Chem Phys 136:104501

    Article  Google Scholar 

  44. Guzmán-Ramírez G, Aguilera-Granja F, Robles J (2010) DFT and GEGA genetic algorithm optimized structures of Cun ν (ν = ±1, 0, 2; n = 3–13) clusters. Eur Phys J D 57:49–60

    Article  Google Scholar 

  45. Jug K, Zimmermann B, Calaminici P, Köster AM (2002) Structure and stability of small copper clusters. J Chem Phys 116:4497–4507

    Article  CAS  Google Scholar 

  46. Kabir M, Bhattacharya AK, Mookerjee A (2003) Structure and stability of copper clusters

  47. Guzmán-Ramírez G, Aguilera-Granja F, Robles J (2010) DFT study of the fragmentation channels and electronic properties of Cu n ν (ν = ± 1, 0, 2; n = 3–13) clusters. Eur Phys J D 57:335–342

    Article  Google Scholar 

  48. Jaque P, Toro-Labbé A (2002) Characterization of copper clusters through the use of density functional theory reactivity descriptors. J Chem Phys 117:3208–3218

    Article  CAS  Google Scholar 

  49. Wiberg KB (1968) Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  50. Lewand L, Reed S (2008) Destruction of dibenzyl disulfide in transformer oil. In: 75th Annual International Doble Client Conference, pp 1–20

  51. Scatiggio F, Tumiatti V, Maina R, Tumiatti M, Pompili M, Bartnikas R (2008) Corrosive sulfur in insulating oils: its detection and correlated power apparatus failures. IEEE Trans Power Delivery 23:508–509

    Article  Google Scholar 

  52. Amimoto T, Hosokawa N, Nagao E, Tanimura J, Toyama S (2009) Concentration dependence of corrosive sulfur on copper-sulfide deposition on insulating paper used for power transformer insulation. IEEE Trans Dielectr Electr Insul 16:1489–1495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by FONDECYT through the Project Numbers 1120785 and 1140340 and Universidad Andrés Bello Grant DI-497-14/R. M.S.-T and thank CONICYT for a Ph.D. scholarship and Universidad Andrés Bello for support through grant DI40/12-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Saavedra-Torres.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saavedra-Torres, M., Jaque, P., Tielens, F. et al. Theoretical study of dibenzyl disulfide adsorption on Cu7 cluster as a first approximation to sulfur-induced copper corrosion process. Theor Chem Acc 134, 73 (2015). https://doi.org/10.1007/s00214-015-1677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1677-8

Keywords

Navigation