Skip to main content
Log in

Ultrafast dynamics of electronically excited diborane radical cation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Full-dimensional quantum mechanical study is carried out to investigate the vibronic structure and internal conversion dynamics of the energetically low-lying electronic excited states of \( {\text{B}}_{{\text{2}}} {\text{H}}_{6}^{{ \cdot + }} \). A model diabatic electronic Hamiltonian, within the quadratic vibronic coupling approach comprising of five energetically low-lying electronic states, is developed, and the parameters of the Hamiltonian are estimated by performing extensive ab initio  electronic structure calculations using the equation-of-motion coupled-cluster singles and doubles method. The nuclear dynamics on the constructed diabatic electronic states is studied by employing both time-independent and time-dependent quantum mechanical methods. Theoretically calculated vibronic structure of the electronic states is found to be in excellent accord with the available experimental results. Extremely strong vibronic interactions among the electronic states result highly overlapping and diffuse vibronic bands and complicate the assignment of vibronic progression. Examination of non-radiative internal conversion dynamics revealed very short lifetime (\(<\)60 fs) of the excited electronic states of \( {\text{B}}_{{\text{2}}} {\text{H}}_{6}^{{ \cdot + }} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dilthey W (1921) Z Angew Chem 34:596

    Google Scholar 

  2. Bauer SH (1937) J Am Chem Soc 59:1096

    Article  CAS  Google Scholar 

  3. Blum E, Herzberg G (1937) J Phys Chem 41:91

    Article  CAS  Google Scholar 

  4. Nekrassov BV, Gen J (1940) Chem URSS 10:1021

    Google Scholar 

  5. Nekrassov BV, Gen J (1940) Chem URSS 10:1156

    Google Scholar 

  6. Syrkin YK, Dyatkina ME (1941) Acta Physicochim URSS 14:547

    CAS  Google Scholar 

  7. Stitt F (1940) J Chem Phys 8:941

    Google Scholar 

  8. Stitt F (1941) J Chem Phys 9:780

    Article  CAS  Google Scholar 

  9. Longuet-Higgins HC, Bell RP (1943) J Chem Soc 250

  10. Pitzer KS (1946) J Am Chem Soc 67:1126

    Article  Google Scholar 

  11. Mulliken RS (1947) Chem Rev 41:207

    Article  CAS  Google Scholar 

  12. Walsh AD (1947) J Chem Soc 89

  13. Price WC (1947) J Chem Phys 15:614

    Article  CAS  Google Scholar 

  14. Price WC (1948) J Chem Phys 16:894

    Article  CAS  Google Scholar 

  15. Shoolery JN (1955) Discuss Faraday Soc 19:215

    Article  Google Scholar 

  16. Hedburg K, Schomaker V (1951) J Am Chem Soc 73:1482

    Article  Google Scholar 

  17. Yamazaki M (1957) J Chem Phys 27:1401

    Article  CAS  Google Scholar 

  18. Bartell LS, Carroll BL (1965) J Chem Phys 42:1135

    Article  CAS  Google Scholar 

  19. Burnelle L, Kaufman JJ (1965) J Chem Phys 43:3540

    Article  CAS  Google Scholar 

  20. Palke WE, Lipscomb WN (1966) J Am Chem Soc 88:2384

    Article  CAS  Google Scholar 

  21. Buenker RJ, Peyerimhoff SD, Allen LC, Whitten JL (1966) J Chem Phys 45:2835

    Article  CAS  Google Scholar 

  22. Kuchitsu K (1968) J Chem Phys 49:4456

    Article  CAS  Google Scholar 

  23. Duncan JL (1985) J Mol Spectrosc 113:63

    Article  CAS  Google Scholar 

  24. Sana M, Leroy G, Henriet Ch (1989) Theor Chim Acta 76:125

    Article  CAS  Google Scholar 

  25. Bock CW, Trachtman M, Murphy C, Muschert B, Mains GJ (1991) J Phys Chem 95:2339

    Article  CAS  Google Scholar 

  26. Stanton FJ, Gauss J (1998) J Chem Phys 108:9218

    Article  CAS  Google Scholar 

  27. Lafferty WJ, Flaud J-M, Sams RL, Blake TA, Sharpe SW (2000) J Mol Spectrosc 201:285

    Article  CAS  Google Scholar 

  28. Wang F, Pang W, Huangb M (2006) J Electron Spectrosc Relat Phenom 151:215

    Article  Google Scholar 

  29. Rose T, Frey R, Brehm B (1969) J Chem Soc D: Chem Com 24:1518

    Article  Google Scholar 

  30. Lloyd DR, Lynaugh N (1970) Phil Trans R Soc Lond A 268

  31. Brundle CR, Robin MB, Basch H, Pinsky M, Bond A (1970) J Am Chem Soc 92:3863

    Article  CAS  Google Scholar 

  32. Åsbrink L, Svensson A, von Niessen W, Bieri G (1981) J Electron Spectrosc Relat Phenom 24:293

    Article  Google Scholar 

  33. Dyke JM, Haggerston D, Warschkow O, Andrews L, Downs AJ, Souter PF (1996) J Phys Chem 100:2998

    Article  CAS  Google Scholar 

  34. Margrave JL (1956) J Phys Chem 51:38

    Google Scholar 

  35. Koski WS, Kaufmann JJ, Pachuki CF, Shipko FJ (1958) J Am Chem Soc 80:3202

    Article  CAS  Google Scholar 

  36. Fehlner TP, Koski WS (1964) J Am Chem Soc 86:581

    Article  CAS  Google Scholar 

  37. Wilson JH, McGee HA Jr (1967) J Chem Phys 46:1444

    Article  CAS  Google Scholar 

  38. Baylis AB, Pressley GA Jr, Stafford FE (1966) J Am Chem Soc 88:2428

    Article  CAS  Google Scholar 

  39. Irion MP, Kompa KL (1982) J Chem Phys 76:2338

    Article  CAS  Google Scholar 

  40. Ruščić B, Mayhew CA, Berkowitz J (1988) J Chem Phys 88:5580

    Article  Google Scholar 

  41. Beglinger Ch, Rüede R, Jungen M (1996) Chem Phys Lett 187:447

    Article  Google Scholar 

  42. Basner R, Schmidt M, Becker K (2003) J Chem Phys 118:2153

    Article  CAS  Google Scholar 

  43. Curtiss LA, Pople JA (1988) J Chem Phys 89:4875

    Article  CAS  Google Scholar 

  44. Tian SX (2005) J Phys Chem A 109:5471

    Article  CAS  Google Scholar 

  45. Koopmans T (1933) Physica 1:104

    Article  CAS  Google Scholar 

  46. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Google Scholar 

  47. Lichten W (1967) Phys Rev 164:131

    Article  CAS  Google Scholar 

  48. Smith FT (1969) Phys Rev 179:111

    Article  Google Scholar 

  49. O’Malley TF (1971) Adv At Mol Phys 7:223

    Article  Google Scholar 

  50. Pacher T, Cederbaum LS, Köppel H (1993) Adv Chem Phys 84:293

    CAS  Google Scholar 

  51. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  52. Cížek J (1969) In: Hariharan PC (ed) Advances in Chemical Physics, vol 14. Wiley Interscience, New York, p 35

    Chapter  Google Scholar 

  53. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  54. Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382

    Article  CAS  Google Scholar 

  55. Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700

    Article  CAS  Google Scholar 

  56. Frisch MJ et al (2003) Gaussian 03, revision B. 05. Gaussian, Inc., Pittsburgh

    Google Scholar 

  57. Wilson EW, Decius JC, Cross PC (1995) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  58. Stanton JF, Bartlett RJ (1993) J Chem Phys 98:7029

    Article  CAS  Google Scholar 

  59. CFOUR, a quantum chemical program package written by Stanton JF, Gauss J, Harding ME, Szalay PG with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, Mück LA, O’Neill DP, Price DR, Prochnow E, Puzzarini C, Ruud K, Schiffmann F, Schwalbach W, Simmons C, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J, Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Aa. Jensen HJ, Jørgensen P, Olsen J), and ECP routines by Mitin AV, van Wüllen C. For the current version, see http://www.cfour.de

  60. Lanczos C (1950) J Res Natl Bur Stand 45:255

    Article  Google Scholar 

  61. Cullum J, Willoughby R (1985) Lanczos algorithms for large symmetric eigenvalue problems, vol I, II. Birkhäuser, Boston

    Google Scholar 

  62. Köppel H, Domcke W (1998) In: Schleyer PVR (ed) Encyclopedia of computational chemistry. Wiley, New York, p 3166

    Google Scholar 

  63. Domcke W, Köppel H, Cederbaum LS (1981) Mol Phys 43:851

    Article  CAS  Google Scholar 

  64. Meyer H-D, Manthe U, Cederbaum LS (1990) Chem Phys Lett 165:73

    Article  CAS  Google Scholar 

  65. Manthe U, Meyer H-D, Cederbaum LS (1992) J Chem Phys 97:3199

    Article  CAS  Google Scholar 

  66. Beck MH, Jäckle A, Worth GA, Meyer H-D (2000) Phys Rep 1:324

    Google Scholar 

  67. Worth GA, Beck MH, Jäckle A, Meyer H-D, The MCTDH Package, Version 8.2, (2000), University of Heidelberg, Heidelberg, Germany. Meyer H-D, Version 8.3, (2002), Version 8.4 (2007). See http://mctdh.uni-hd.de

Download references

Acknowledgments

This study is in part supported by a research grant (Grant no. SB/S1/PC-052/2013) from the Department of Science and Technology, New Delhi. S.N.R thanks the CSIR, New Delhi, for a Doctoral fellowship. Computational facility provided by the CMSD, University of Hyderabad, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahapatra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, V.S., Reddy, S.N. & Mahapatra, S. Ultrafast dynamics of electronically excited diborane radical cation. Theor Chem Acc 134, 39 (2015). https://doi.org/10.1007/s00214-015-1632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1632-8

Keywords

Navigation