Skip to main content
Log in

Effects of the second hydration shell on excited-state multiple proton transfer: dynamics simulations of 7-azaindole:(H2O)1–5 clusters in the gas phase

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Dynamics of the multiple excited-state proton transfer (ESPT) in clusters of 7-azaindole with up to five water molecules was investigated with quantum chemical methods. The ultrafast excited-state dynamics triggered by photoexcitation was simulated with the algebraic diagrammatic construction to the second-order scheme. Multiple ESPT through a hydrogen-bonded network is observed in the 100-fs scale. The probability of tautomerization is anti-correlated with the maximum free energy barrier in the excited state. An increasing number of water molecules tends to reduce the barrier by strengthening the hydrogen-bonded network. Barrierless reactions are found already for clusters with four waters. In structures presenting double hydrogen bond circuits, proton transfer happens mostly through the internal circuit by triple proton transfer. The overall role of the second hydration shell is of stabilizing the network, facilitating the proton transfer in the internal circuit. Proton transfers involving the second hydration shell were observed, but with small probability of occurrence. The proton-transfer processes tend to be synchronous, with two of them occurring within 10–15 fs apart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hynes JT, Klinman JP, Limbach HH, Schowen RL (eds) (2007) Hydrogen-transfer reactions: biological aspects I–II. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–4

    Google Scholar 

  2. Chang SM, Tzeng YJ, Wu SY, Li KY, Hsueh KL (2005) Thin Solid Films 477:38

    Article  CAS  Google Scholar 

  3. Rey R, Moller KB, Hynes JT (2002) J Phys Chem A 106:11993

    Article  CAS  Google Scholar 

  4. Arnaut LG, Formosinho SJ (1993) J Photochem Photobiol A 75:1

    Article  CAS  Google Scholar 

  5. Formosinho SJ, Arnaut LG (1993) J Photochem Photobiol A 75:21

    Article  CAS  Google Scholar 

  6. Gebicki J, Bally T (1997) Acc Chem Res 30:477

    Article  CAS  Google Scholar 

  7. Freier E, Wolf S, Gerwert K (2011) Proc Natl Acad Sci USA 108:11435

    Article  CAS  Google Scholar 

  8. Zewail AH (2000) Pure Appl Chem 72:2219

    Article  CAS  Google Scholar 

  9. Taylor CA, El-Bayoumi MA, Kasha M (1969) Proc Natl Acad Sci USA 63:253

    Article  CAS  Google Scholar 

  10. Yokoyama H, Watanabe H, Omi T, Ishiuchi S, Fujii M (2001) J Phys Chem A 105:9366

    Article  CAS  Google Scholar 

  11. Nakajima A, Hirano M, Hasumi R, Kaya K, Watanabe H, Carter CC, Williamson JM, Miller TA (1997) J Phys Chem A 101:392

    Article  CAS  Google Scholar 

  12. Smirnov AS, English DS, Rich RL, Lane J, Teyton L, Schwabacher AW, Luo S, Thornburg RW, Petrich JW (1997) J Phys Chem B 101:2758

    Article  CAS  Google Scholar 

  13. Negrerie M, Gai F, Bellefeuille SM, Petrich JW (1991) J Phys Chem 95:8663

    Article  CAS  Google Scholar 

  14. Negrerie M, Bellefeuille SM, Whitham S, Petrich JW, Thornburg RW (1990) J Am Chem Soc 112:7419

    Article  CAS  Google Scholar 

  15. Daengngern R, Kungwan N, Wolschann P, Aquino AJA, Lischka H, Barbatti M (2011) J Phys Chem A 115:14129

    Article  CAS  Google Scholar 

  16. Young JW, Pratt DW (2011) J Phys Chem 135:084301

    Article  Google Scholar 

  17. Duong MPT, Kim Y (2010) J Phys Chem A 114:3403

    Article  CAS  Google Scholar 

  18. Sakota K, Jouvet C, Dedonder C, Fujii M, Sekiya H (2010) J Phys Chem A 114:11161

    Article  CAS  Google Scholar 

  19. Sakota K, Kageura Y, Sekiya H (2008) J Chem Phys 129:054303

    Article  Google Scholar 

  20. Kwon O-H, Zewail AH (2007) Proc Natl Acad Sci USA 104:8703

    Article  CAS  Google Scholar 

  21. Sakota K, Inoue N, Komoto Y, Sekiya H (2007) J Phys Chem A 111:4596

    Article  CAS  Google Scholar 

  22. Sakota K, Komoto Y, Nakagaki M, Ishikawa W, Sekiya H (2007) Chem Phys Lett 435:1

    Article  CAS  Google Scholar 

  23. Takeuchi S, Tahara T (2007) Proc Natl Acad Sci USA 104:5285

    Article  CAS  Google Scholar 

  24. Hara A, Sakota K, Nakagaki M, Sekiya H (2005) Chem Phys Lett 407:30

    Article  CAS  Google Scholar 

  25. Catalan J, Perez P, del Valle JC, de Paz JLG, Kasha M (2004) Proc Natl Acad Sci USA 101:419

    Article  CAS  Google Scholar 

  26. Waluk J (2003) Acc Chem Res 36:832

    Article  CAS  Google Scholar 

  27. Folmer DE, Wisniewski ES, Stairs JR, Castleman AW Jr (2000) J Phys Chem A 104:10545

    Article  CAS  Google Scholar 

  28. Catalán J, del Valle JC, Kasha M (1999) Proc Natl Acad Sci USA 96:8338

    Article  Google Scholar 

  29. Folmer DE, Wisniewski ES, Hurley SM, Castleman AW Jr (1999) Proc Natl Acad Sci USA 96:12980

    Article  CAS  Google Scholar 

  30. Mente S, Maroncelli M (1998) J Phys Chem A 102:3860

    Article  CAS  Google Scholar 

  31. Takeuchi S, Tahara T (1998) J Phys Chem A 102:7740

    Article  CAS  Google Scholar 

  32. Huang Y, Arnold S, Sulkes M (1996) J Phys Chem 100:4734

    Article  CAS  Google Scholar 

  33. Chou P-T, Wei C-Y, Chang C-P, Kuo M-S (1995) J Phys Chem 99:11994

    Article  CAS  Google Scholar 

  34. Ilich P (1995) J Mol Struct 354:37

    Article  CAS  Google Scholar 

  35. Chen Y, Gai F, Petrich JW (1994) Chem Phys Lett 222:329

    Article  CAS  Google Scholar 

  36. Chen Y, Rich RL, Gai F, Petrich JW (1993) J Phys Chem 97:1770

    Article  CAS  Google Scholar 

  37. Chou PT, Martinez ML, Cooper WC, Collins ST, McMorrow DP, Kasha M (1992) J Phys Chem 96:5203

    Article  CAS  Google Scholar 

  38. Moog RS, Maroncelli M (1991) J Phys Chem 95:10359

    Article  CAS  Google Scholar 

  39. Chau P-T (2001) J Chin Chem Soc 48:651

    Google Scholar 

  40. Chaban GM, Gordon MS (1999) J Phys Chem A 103:185

    Article  CAS  Google Scholar 

  41. Gordon MS (1996) J Phys Chem 100:3974

    Article  CAS  Google Scholar 

  42. Fang H, Kim Y (2011) J Chem Theory Comput 7:642

    Article  CAS  Google Scholar 

  43. Pino GA, Alata I, Dedonder C, Jouvet C, Sakota K, Sekiya H (2011) Phys Chem Chem Phys 13:6325

    Article  CAS  Google Scholar 

  44. Kina D, Nakayama A, Noro T, Taketsugu T, Gordon MS (2008) J Phys Chem A 112:9675

    Article  CAS  Google Scholar 

  45. Fernandez-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ (2001) J Chem Phys 114:7518

    Article  CAS  Google Scholar 

  46. Yu X, Yamazaki S, Taketsugu T (2012) J Phys Chem A 116:10566

    Article  CAS  Google Scholar 

  47. Daengngern R, Kerdpol K, Kungwan N, Hannongbua S, Barbatti M (2013) J Photochem Photobiol A 266:28

    Article  CAS  Google Scholar 

  48. Hättig C (2005) Adv Quantum Chem 50:37

    Article  Google Scholar 

  49. Hättig C (2003) J Chem Phys 118:7751

    Article  Google Scholar 

  50. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  51. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  52. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  Google Scholar 

  53. Casadesus R, Moreno M, Lluch JM (2003) Chem Phys 290:319

    Article  CAS  Google Scholar 

  54. Trofimov AB, Schirmer J (1995) J Phys B At Mol Opt Phys 28:2299

    Article  CAS  Google Scholar 

  55. Schirmer J (1982) Phys Rev A 26:2395

    Article  CAS  Google Scholar 

  56. Winter NOC, Graf NK, Leutwyler S, Hattig C (2013) Phys Chem Chem Phys 15:6623

    Article  CAS  Google Scholar 

  57. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  58. Barbatti M, Ruckenbauer M, Plasser F, Pittner J, Granucci G, Persico M, Lischka H (2014) WIREs Comput Mol Sci 4:26

    Article  CAS  Google Scholar 

  59. Barbatti M, Granucci G, Ruckenbauer M, Plasser F, Crespo-Otero R, Pittner J, Persico M, Lischka H (2013) NEWTON-X: a package for Newtonian dynamics close to the crossing seam. www.newtonx.org

  60. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) J Chem Phys 76:637

    Article  CAS  Google Scholar 

  61. Verlet L (1967) Phys Rev 159:98

    Article  CAS  Google Scholar 

  62. Tanner C, Manca C, Leutwyler S (2003) Science 302:1736

    Article  CAS  Google Scholar 

  63. Kungwan N, Daengngern R, Piansawan T, Hannongbua S, Barbatti M (2013) Theor Chem Acc 132:1

    Article  CAS  Google Scholar 

  64. Kungwan N, Plasser F, Aquino AJA, Barbatti M, Wolschann P, Lischka H (2012) Phys Chem Chem Phys 14:9016

    Article  CAS  Google Scholar 

  65. Barbatti M, Aquino AJA, Lischka H, Schriever C, Lochbrunner S, Riedle E (2009) Phys Chem Chem Phys 11:1406

    Article  CAS  Google Scholar 

  66. Dewar MJS (1984) J Am Chem Soc 106:209

    Article  CAS  Google Scholar 

  67. Lawrenz M, Baron R, McCammon JA (2009) J Chem Theory Comput 5:1106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Thailand Research Fund (MRG5480294 and TRG5680098) for financial support. K. Kerdpol and R. Daengngern thank the Science Achievement Scholarship of Thailand (SAST), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nawee Kungwan or Mario Barbatti.

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2014_1480_MOESM1_ESM.pdf

Ground-state structures of the 7AI(H2O) n=1,1+1,2 complexes; snapshots of trajectories featuring HBR and tautomerization; time evolution of average potential energies and average bond lengths; average relative energies along the reaction pathways; relative energies of the three ground-state 7AI(H2O)3 isomers; Cartesian coordinates of all investigated complexes. (PDF 2693 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kungwan, N., Kerdpol, K., Daengngern, R. et al. Effects of the second hydration shell on excited-state multiple proton transfer: dynamics simulations of 7-azaindole:(H2O)1–5 clusters in the gas phase. Theor Chem Acc 133, 1480 (2014). https://doi.org/10.1007/s00214-014-1480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1480-y

Keywords

Navigation