Skip to main content
Log in

Comparison of multireference configuration interaction potential energy surfaces for H + O2 → HO2: the effect of internal contraction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A comparison is presented of uncontracted multireference singles and doubles configuration interaction (MRCI) and internally contracted MRCI potential energy surfaces for the reaction \({\text{H}}\left( {^{2} {\text{S}}} \right) + {\text{O}}_{2} \left( {^{3} \sum\nolimits_{g}^{ - } {} } \right) \to {\text{HO}}_{2} \left( {^{2} {\text{A}}^{{\prime \prime }} } \right)\). It is found that internal contraction leads to significant differences in the reaction kinetics relative to the uncontracted calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cobos CJ, Hippler H, Troe J (1985) J Phys Chem 89:342

    Article  CAS  Google Scholar 

  2. Bates RW, Golden DM, Hanson RK, Bowman CT (2001) Phys Chem Chem Phys 3:2337

    Article  CAS  Google Scholar 

  3. Hahn J, Krasnoperov L, Luther K, Troe J (2004) Phys Chem Chem Phys 6:1997

    Article  CAS  Google Scholar 

  4. Cobos CJ, Troe J (1985) J Chem Phys 83:1010

    Article  CAS  Google Scholar 

  5. Harding LB, Troe J, Ushakov VG (2000) Phys Chem Chem Phys 2:631

    Article  CAS  Google Scholar 

  6. Troe J (2000) Proc Combust Inst 28:1463

    Article  CAS  Google Scholar 

  7. Marques JMC, Varandas AJC (2001) Phys Chem Chem Phys 3:505

    Article  CAS  Google Scholar 

  8. Harding LB, Troe J, Ushakov VG (2001) Phys Chem Chem Phys 3:2630

    Article  CAS  Google Scholar 

  9. Lin SY, Rackham EJ, Guo H (2006) J Phys Chem A 110:1534

    Article  CAS  Google Scholar 

  10. Sellevag SR, Georgievskii Y, Miller JA (2008) J Phys Chem 112:5085

    Article  CAS  Google Scholar 

  11. Xu C, Xie D, Zhang DG, Lin SY, Guo H (2005) J Chem Phys 122:244035

    Google Scholar 

  12. Lischka H, Müller T, Szalay PG, Shavitt I, Pitzer RM, Shepard R (2011) WIREs Comput Mol Sci 1:191

    Article  CAS  Google Scholar 

  13. MOLPRO, version 2010.1, a package of ab initio programs, Werner H-J, Knowles PJ, Manby FR, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer RM, Reiher M, Shiozaka T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A, see http://www.molpro.net

  14. McLean AD, Liu B (1973) J Chem Phys 58:1066

    Article  CAS  Google Scholar 

  15. Szalay PG, Mueller T, Gidofalvi G, Lischka H, Shepard R (2012) Chem Rev 112:108

    Article  CAS  Google Scholar 

  16. Meyer, W (1977) In: Methods of electronic structure theory. Schaefer III HF (ed), Plenum: New York, pp 413–446

  17. Werner H-J, Reinsch E-A (1982) J. Chem Phys 76:3144

    Article  CAS  Google Scholar 

  18. Knowles PJ, Handy NC (1984) Chem Phys Lett 111:315

    Article  CAS  Google Scholar 

  19. Knowles PJ, Handy NC (1989) Comp Phys Commun 54:75

    Article  CAS  Google Scholar 

  20. Werner H-J, Knowles P (1988) J Chem Phys 89:5803

    Article  CAS  Google Scholar 

  21. Knowles P, Werner H-J (1988) Chem Phys Lett 145:514

    Article  CAS  Google Scholar 

  22. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  23. Szalay PG, Bartlett RJ (1993) Chem Phys Lett 143:413

    Google Scholar 

  24. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  25. Klippenstein SJ (1992) J Chem Phys 96:367

    Article  Google Scholar 

  26. Georgievskii Y, Klippenstein SJ (2003) J Phys Chem A 107:9776

    Article  CAS  Google Scholar 

  27. Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61

    Article  CAS  Google Scholar 

  28. Bruckner KA (1955) Phys Rev 100:36

    Article  Google Scholar 

  29. Burke MP, Chaos M, Ju Y, Dryer FL, Klippenstein SJ (2012) Int J Chem Kinet 44:444

    Article  CAS  Google Scholar 

  30. Burke MP, Chaos M, Dryer FL, Ju Y (2010) Combust Flame 157:618

    Article  CAS  Google Scholar 

  31. Burke MP, Dryer FL, Ju Y (2010) Proc Combust Inst 33:905

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract Numbers DE-AC02-06CH11357. HL was also supported by the National Science Foundation under Project No. CHE-1213263 and by the Robert A.Welch Foundation under Grant No. D-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence B. Harding.

Additional information

Dedicated to Professor Thom Dunning and published as part of the special collection of articles celebrating his career upon his retirement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, L.B., Klippenstein, S.J., Lischka, H. et al. Comparison of multireference configuration interaction potential energy surfaces for H + O2 → HO2: the effect of internal contraction. Theor Chem Acc 133, 1429 (2014). https://doi.org/10.1007/s00214-013-1429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1429-6

Keywords

Navigation