Skip to main content
Log in

Singlet oxygen generation versus O–O homolysis in phenyl-substituted anthracene endoperoxides investigated by RASPT2, CASPT2, CC2, and TD-DFT methods

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic excited states corresponding to singlet oxygen generation versus O–O splitting in o-fluorine-phenyl-9-anthracene-9,10-endoperoxide 1 and its 9,10-bisarylanthracene analog 2 have been investigated using theoretical methods. In the case of the smaller endoperoxide 1, the recently developed second-order perturbation theory restricted active space (RASPT2) method has been employed and the results are compared to those from the complete active space (CASPT2), second-order approximated coupled cluster (CC2), and time-dependent density functional theory (TD-DFT) approaches. In addition to the vertical excited states, the photochemical path leading to homolytic O–O dissociation has been computed. This process is governed by a point, where four singlet and four triplet states are almost degenerate and show substantial spin-orbit coupling. The results obtained with RASPT2 indicate that the S 1 state is of π *oo σ *oo character, corresponding to the O–O homolytic dissociation, while higher excited states S n (n ≥ 2) correspond to local and charge transfer excitations and should be correlated to the generation of singlet molecular oxygen. A similar photochemical picture is obtained with CASPT2, although two different active spaces are required to describe different parts of the spectrum. The calculations carried out with CC2 as well as the functionals CAM-B3LYP and the B3LYP(32) containing 32 % of exact exchange show good agreement with the RASPT2 energies, but present a strong mixing of π *oo σ *oo and π *oo π *an excitations in the lowest S 1 state, contradicting the assignment of RASPT2/CASPT2. The use of BP86 is strongly discouraged since it misplaces a large number of charge transfer states below the π *oo σ *oo state. The excited states of 2, calculated with B3LYP(32) are very similar to those of 1, leading to the conclusion that both endoperoxides should show a similar photochemistry, that is, the O–O cleavage seems to be partially quenched and singlet oxygen generation is enhanced, in comparison with the parent compound, anthracene-9,10-endoperoxide.

Graphical abstract

The different electronic excited states of o-fluorine-phenyl-9-anthracene-9,10-endoperoxide have been benchmarked with RASPT2. The lowest excited state corresponds to the homolytic O–O dissociation and higher excited states are connected to singlet oxygen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 233/234:351–357

    Article  Google Scholar 

  2. Aubry JM, Pierlot C, Rigaudy J, Schmidt R (2003) Acc Chem Res 36:668–675

    Article  CAS  Google Scholar 

  3. Choea E, Min DB (2006) Crit Rev Food Sci Nutr 46:1–22

    Article  Google Scholar 

  4. Henderson BW, Dougherty T (1992) Photochem Photobiol 55:145–157

    Article  CAS  Google Scholar 

  5. Foote CS (1984) Mechanisms of photooxidation. In: Doiron DG, Gomer CJ (eds) Porphyrin localization and treatment of tumors. Alan R. Liss, Inc, pp 3–18

  6. Schmidt R, Schaffner K, Trost W, Brauer HD (1984) J Am Chem Soc 88:956–958

    CAS  Google Scholar 

  7. Blumenstock T, Comes FJ, Schmidt R, Brauer HD (1986) Chem Phy Lett 127:452–455

    Article  CAS  Google Scholar 

  8. Jesse J, Comes FJ, Schmidt R, Brauer HD (1989) Chem Phy Lett 160:8–12

    Article  CAS  Google Scholar 

  9. Jesse J, Markert R, Comes FJ, Schmidt R, Brauer HD (1990) Chem Phy Lett 166:95–100

    Article  CAS  Google Scholar 

  10. Brauer HD, Schmidt R (2000) J Phys Chem A 104:164–165

    Article  CAS  Google Scholar 

  11. Schmidt R (2012) Photochem Photobiol 11:1004–1009

    Article  CAS  Google Scholar 

  12. Eisenthal KB, Turro NJ, Dupuy CG, Hrovat DA, Langan J, Jenny TA, Sitzmann EV (1986) J Phys Chem 90:5168–5173

    Article  CAS  Google Scholar 

  13. Klein A, Gudipati MS (1999) J Phys Chem A 103:3843–3853

    Article  CAS  Google Scholar 

  14. Corral I, González L, Lauer A, Freyer W, Fidder H, Heyne K (2008) Chem Phys Lett 452:67–71

    Article  CAS  Google Scholar 

  15. Gudipati MS, Klein A (2000) J Phys Chem A 104:166–167

    Article  CAS  Google Scholar 

  16. Kearns RD (1969) J Am Chem Soc 91:6554–6563

    Article  CAS  Google Scholar 

  17. Kearns RD, Khan AU (1969) Photochem Photobiol 10:193–210 /Khan69

    Google Scholar 

  18. Corral I, González L (2008) J Comput Chem 29:1982–1991

    Article  CAS  Google Scholar 

  19. Corral I, González L (2007) Chem Phys Lett 446:262–267

    Article  CAS  Google Scholar 

  20. Martínez-Fernández L, González L, Corral I (2011) Comput Theoret Chem 975:13–19

    Article  Google Scholar 

  21. Donkers RL, Workentin MS (2004) J Am Chem Soc 126:1688–1698

    Article  CAS  Google Scholar 

  22. Fidder H, Lauer A, Freyer W, Koeppe B, Heyne K (2009) J Phys Chem A 104:6289–6296

    Article  Google Scholar 

  23. Rigaudy J, Breliere C, Scribe P (1978) Tetrahedron Lett 7:687–690

    Article  Google Scholar 

  24. Ernsting NP, Schmidt R, Brauer H (1990) J Phys Chem 94:5252–5255

    Article  CAS  Google Scholar 

  25. Mollenhauer D, Corral I, González L (2010) J Phys Chem Lett 1:1036–1040

    Article  CAS  Google Scholar 

  26. Corral I, González L (2010) Chem Phys Lett 499:21–25

    Article  CAS  Google Scholar 

  27. Assmann M, Worth GA, González L (2012) J Chem Phys 137:22A524-1–22A524-12

  28. Lauer A, Dobryakov AL, Kovalenko SA, Fidder H, Heyne K (2011) . Phys Chem Chem Phys 13:8723–8732

    Article  CAS  Google Scholar 

  29. Zehm D, Fudicker W, Linker T (2007) Angew Chem Int Ed 46:7689–7692

    Google Scholar 

  30. González L, Escudero D, Serrano-Andrés L (2012) Chem Phys Chem 13:28–51

    Article  Google Scholar 

  31. Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007–4016

    Article  CAS  Google Scholar 

  32. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  34. Christiansen O, Koch H, Jørgensen P (1995) Chem Phys Lett 243:409–418

    Article  CAS  Google Scholar 

  35. Malmqvist PÅ, Rendell A, Roos BO (1990) J Phys Chem 94:5477–5482

    Article  CAS  Google Scholar 

  36. Olsen J, Roos BO, Jørgensen P, Jensen HJA (1988) J Chem Phys 89:2185–2192

    Article  CAS  Google Scholar 

  37. Malmqvist PÅ, Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L (2008) J Chem Phys 128:204109-1–204109-10

    Google Scholar 

  38. Manni GL, Aquilante F, Gagliardi L (2011) J Chem Phys 134:034114–034118

    Article  Google Scholar 

  39. Sauri V, Serrano-Andrs L, Shahi ARM, Gagliardi L, Vancoillie S, Pierloot K (2011) J Chem Theory Comput 7:153–168

    Article  CAS  Google Scholar 

  40. Escudero D, González L (2012) J Chem Theory Comput 8:203–213

    Article  CAS  Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, J Bloino GZ, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, CossiM, Rega N,MillamJM, KleneM, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, O Yazyev AJA, R Cammi CP, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT

  44. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  45. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  46. Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359–363

    Article  CAS  Google Scholar 

  47. T H Dunning J (1971) J Chem Phys 55:716–723

  48. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  49. Roos BO (1987) In Ab initio methods in quantum chemistry II. Wiley-VCH, Chinester

  50. Finley J, Malmqvist PÅ, Roos BO, Serrano-Andrés L (1998) Chem Phys Lett 288:299–306

    Article  CAS  Google Scholar 

  51. Aquilante F, Vico LD, Ferré N, Ghigo G, Malmqvist P, Neogrády P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224–247

    Article  CAS  Google Scholar 

  52. Veryazov V, Widmark PO, Serrano-Andrés L, Lindh R, Roos BO (2004). Int J Quantum Chem 100:626–635

    Article  CAS  Google Scholar 

  53. Karlström G, Lindh R, Malmqvist PÅ, Roos BO (2003) . Comput Mater Sci 28:222–239

    Article  Google Scholar 

  54. Andersson K, Aquilante F, Bernhardsson A, Blomberg MRA, Cooper DL, Cossi M, Devarajan A, L De Vico NF, Fülscher MP, Gaenko A, Gagliardi L, Ghigo G, de Graaf C, Hess BA, Hagberg D, Holt A, Karlström G, Krogh JW, Lindh R, Malmqvist PÅ, Neogrády P, Olsen J, Pedersen TB, Pitonak M, Raab J, Reiher M, Roos BO, Ryde U, Schapiro I, Schimmelpfennig B, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stålring J, Thorsteinsson T, Vancoillie S, Veryazov V, Widmark PO, Wolf A (2011) MOLCAS, Release 7.6, Department of Theoretical Chemistry, Lund University

  55. Pierloot K, Dumez B, Widmark PO, Roos BO (1995) Theor Chim Acta 90:87–114

    CAS  Google Scholar 

  56. Aquilante F, Malmqvist P, Pedersen TB, Ghosh A, Roos BO (2008). J Chem Theory Comput 4:694–702

    Article  CAS  Google Scholar 

  57. Anderson K, Roos BO (1995) Chem Phys Lett 245:215–223

    Article  Google Scholar 

  58. Malmqvist P, Roos BO (1989) Chem Phys Lett 155:189–194

    Article  CAS  Google Scholar 

  59. Malmqvist P, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:230–240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Deutsche Forschungsgemeinschaft (GO 1059/6-1). All the calculations have been performed at the Universitätsrechenzentrum of the Friedrich-Schiller University of Jena and at the HP computers of the Theoretical Chemistry group at the University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia González.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (2309 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupfer, S., Pérez-Hernández, G. & González, L. Singlet oxygen generation versus O–O homolysis in phenyl-substituted anthracene endoperoxides investigated by RASPT2, CASPT2, CC2, and TD-DFT methods. Theor Chem Acc 131, 1295 (2012). https://doi.org/10.1007/s00214-012-1295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1295-7

Keywords

Navigation