Skip to main content
Log in

Bonding in cationic MOH + n (M = K − La, Hf − Rn; n = 0–2): DFT performances and periodic trends

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The performances of the DFT functionals B3LYP, BHandHLYP, M06, M06-2X, PBE1PBE, TPSSh, X3LYP, and BP86 have been benchmarked with a thermochemistry database containing 50 bond dissociation energies (BDEs) of M–OH + n complexes (n = 0–2). Among the tested methods, B3LYP was found to perform best both in accuracy and error distributions. Next, 162 BDEs (M+–OH n ) (M = K − La, Hf − Rn; n = 0–2) are calculated at the B3LYP/def2-QZVP level of theory and their periodic trends are presented as an overview. Further, the H-atom affinities of MO+ and MOH+ are derived from the calculated BDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Lunsford JH (1995) Angew Chem Int Ed 34(9):970–980

    Article  CAS  Google Scholar 

  2. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Acc Chem Res 28(3):154–162

    Article  CAS  Google Scholar 

  3. Labinger JA (2004) J Mol Catal A Chem 220(1):27–35

    Article  CAS  Google Scholar 

  4. Schröder D, Schwarz H (1995) Angew Chem Int Ed 34(18):1973–1995

    Article  Google Scholar 

  5. Schwarz H, Schröder D (2000) Pure Appl Chem 72(12):2319–2332

    Article  CAS  Google Scholar 

  6. O’Hair RAJ, Khairallah GN (2004) J Cluster Sci 15(3):331–363

    Article  Google Scholar 

  7. Böhme DK, Schwarz H (2005) Angew Chem Int Ed 44(16):2336–2354

    Article  CAS  Google Scholar 

  8. Johnson GE, Tyo EC, Castleman AW (2008) Proc Natl Acad Sci USA 105(47):18108–18113

    Article  CAS  Google Scholar 

  9. Schröder D, Schwarz H (2008) Proc Natl Acad Sci USA 105(47):18114–18119

    Article  Google Scholar 

  10. Schlangen M, Schwarz H (2009) Dalton Trans 46:10155–10165

    Article  CAS  Google Scholar 

  11. Roithová J, Schröder D (2009) Chem Rev 110(2):1170–1211

    Article  CAS  Google Scholar 

  12. Schwarz H (2010) Angew Chem Int Ed Engl (accepted)

  13. Božović A, Feil S, Koyanagi G, Viggiano A, Zhang X, Schlangen M, Schwarz H, Bohme D (2010) Chem Eur J 16(38):11605–11610

    Article  CAS  Google Scholar 

  14. Schröder D, Schwarz H (1990) Angew Chem Int Ed 29(12):1433–1434

    Article  Google Scholar 

  15. Schröder D, Fiedler A, Hrušák J, Schwarz H (1992) J Am Chem Soc 114(4):1215–1222

    Article  Google Scholar 

  16. Schröder D, Schwarz H, Clemmer DE, Chen Y, Armentrout PB, Baranov VI, Böhme DK (1997) Int J Mass Spectrom Ion Processes 161(1–3):175–191

    Article  Google Scholar 

  17. Shiota Y, Yoshizawa K (2003) J Chem Phys 118(13):5872–5879

    Article  CAS  Google Scholar 

  18. Wesendrup R, Schröder D, Schwarz H (1994) Angew Chem Int Ed Engl 33(11):1174–1176

    Article  Google Scholar 

  19. Pavlov M, Blomberg MRA, Siegbahn PEM, Wesendrup R, Heinemann C, Schwarz H (1997) J Phys Chem A 101(8):1567–1579

    Article  CAS  Google Scholar 

  20. Ryan MF, Stöckigt D, Schwarz H (1994) J Am Chem Soc 116(21):9565–9570

    Article  CAS  Google Scholar 

  21. Koyanagi GK, Caraiman D, Blagojevic V, Bohme DK (2002) J Phys Chem A 106(18):4581–4590

    Article  CAS  Google Scholar 

  22. Lavrov VV, Blagojevic V, Koyanagi GK, Orlova G, Bohme DK (2004) J Phys Chem A 108(26):5610–5624

    Article  CAS  Google Scholar 

  23. Gong Y, Zhou M, Andrews L (2009) Chem Rev 109(12):6765–6808

    Article  CAS  Google Scholar 

  24. Shiota Y, Yoshizawa K (2000) J Am Chem Soc 122(49):12317–12326

    Article  CAS  Google Scholar 

  25. Nakao Y, Hirao K, Taketsugu T (2001) J Chem Phys 114(18):7935–7940

    Article  CAS  Google Scholar 

  26. Gutsev GL, Andrews L, Bauschlicher CW (2003) Theor Chem Acc 109(6):298–308

    CAS  Google Scholar 

  27. Schofield K (2006) J Phys Chem A 110(21):6938–6947

    Article  CAS  Google Scholar 

  28. Song P, Guan W, Yao C, Su Z, Wu Z, Feng J, Yan L (2007) Theor Chem Acc 117(3):407–415

    Article  CAS  Google Scholar 

  29. Yao C, Guan W, Song P, Su Z, Feng J, Yan L, Wu Z (2007) Theor Chem Acc 117(1):115–122

    Article  CAS  Google Scholar 

  30. Schröder D, Roithová J (2006) Angew Chem Int Ed 45(34):5705–5708

    Article  CAS  Google Scholar 

  31. Božović A, Bohme DK (2009) Phys Chem Chem Phys 11(28):5940–5951

    Article  CAS  Google Scholar 

  32. Feyel S, Döbler J, Höckendorf R, Beyer MK, Sauer J, Schwarz H (2008) Angew Chem Int Ed Engl 47(10):1946–1950

    Article  CAS  Google Scholar 

  33. de Petris G, Troiani A, Rosi M, Angelini G, Ursini O (2009) Chem Eur J 15(17):4248–4252

    Article  CAS  Google Scholar 

  34. Dietl N, Engeser M, Schwarz H (2009) Angew Chem Int Ed 48(26):4861–4863

    Article  CAS  Google Scholar 

  35. Zhang X, Schwarz H (2010) ChemCatChem 2(11):1391–1394

    Article  CAS  Google Scholar 

  36. Becke AD (1988) Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  39. Becke AD (1993) J Chem Phys 98(2):1372–1377

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar D (2008) Theor Chem Acc 120(1):215–241

    Article  CAS  Google Scholar 

  41. Ernzerhof M, Perdew JP (1998) J Chem Phys 109(9):3313–3320

    Article  CAS  Google Scholar 

  42. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91(14):146401

    Article  CAS  Google Scholar 

  43. Xu X, Goddard WA (2004) Proc Natl Acad Sci USA 101(9):2673–2677

    Article  CAS  Google Scholar 

  44. Perdew JP (1986) Phys Rev B 33(12):8822–8824

    Article  Google Scholar 

  45. Korth M, Grimme S (2009) J Chem Theory Comput 5(4):993–1003

    Article  CAS  Google Scholar 

  46. Armentrout PB (2003) Int J Mass Spectrom 227(3):289–302

    Article  CAS  Google Scholar 

  47. Rodgers MT, Armentrout PB (2004) Acc Chem Res 37(12):989–998

    Article  CAS  Google Scholar 

  48. Armentrout PB, Ervin KM, Rodgers MT (2008) J Phys Chem A 112(41):10071–10085

    Article  CAS  Google Scholar 

  49. Holthausen MC, Heinemann C, Cornehl HH, Koch W, Schwarz H (1995) J Chem Phys 102(12):4931–4941

    Article  CAS  Google Scholar 

  50. Holthausen MC, Mohr M, Koch W (1995) Chem Phys Lett 240(4):245–252

    Article  CAS  Google Scholar 

  51. Holthausen MC (2005) J Comput Chem 26(14):1505–1518

    Article  CAS  Google Scholar 

  52. Baker J, Pulay P (2003) J Comput Chem 24(10):1184–1191

    Article  CAS  Google Scholar 

  53. de Jong GT, Sola M, Visscher L, Bickelhaupt FM (2004) J Chem Phys 121(20):9982–9992

    Article  CAS  Google Scholar 

  54. Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109(49):11127–11143

    Article  CAS  Google Scholar 

  55. Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) J Phys Chem A 110(2):709–716

    Article  CAS  Google Scholar 

  56. Furche F, Perdew JP (2006) J Chem Phys 124(4):044103–044127

    Article  CAS  Google Scholar 

  57. Jensen KP, Roos BO, Ryde U (2007) J Chem Phys 126(1):014103–014114

    Article  CAS  Google Scholar 

  58. Niu S, Hall MB (2000) Chem Rev 100(2):353–406

    Article  CAS  Google Scholar 

  59. Harrison JF (2000) Chem Rev 100(2):679–716

    Article  CAS  Google Scholar 

  60. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11(46):10757–10816

    Article  CAS  Google Scholar 

  61. Zhao Y, González-García N, Truhlar DG (2005) J Phys Chem A 109(9):2012–2018

    Article  CAS  Google Scholar 

  62. Paier J, Marsman M, Kresse G (2007) J Chem Phys 127(2):024103–024110

    Article  CAS  Google Scholar 

  63. Cramer CJ, Gour JR, Kinal A, Wloch M, Piecuch P, Moughal Shahi AR, Gagliardi L (2008) J Phys Chem A 112(16):3754–3767

    Article  CAS  Google Scholar 

  64. Butschke B, Schröder D, Schwarz H (2009) Organometallics 28(15):4340–4349

    Article  CAS  Google Scholar 

  65. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123(16):161103–161104

    Article  CAS  Google Scholar 

  66. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2(2):364–382

    Article  CAS  Google Scholar 

  67. Zhao Y, Truhlar DG (2008) Acc Chem Res 41(2):157–167

    Article  CAS  Google Scholar 

  68. Grimme S (2006) J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  69. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9(26):3397–3406

    Article  CAS  Google Scholar 

  70. Schwabe T, Grimme S (2008) Acc Chem Res 41(4):569–579

    Article  CAS  Google Scholar 

  71. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  Google Scholar 

  72. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77(2):123–141

    Article  CAS  Google Scholar 

  73. Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P (1996) J Chem Phys 105(3):1052–1059

    Article  CAS  Google Scholar 

  74. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113(7):2563–2569

    Article  CAS  Google Scholar 

  75. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119(21):11113–11123

    Article  CAS  Google Scholar 

  76. Dunning TH Jr, Hay PJ (1976) In: Schaefer III HF (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28

  77. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT

  78. Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208(3–4):237–240

    Article  Google Scholar 

  79. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208(1–2):111–114

    Article  CAS  Google Scholar 

  80. Pyykkö P (1988) Chem Rev 88(3):563–594

    Article  Google Scholar 

  81. Hrušák J, Hertwig RH, Schröder D, Schwerdtfeger P, Koch W, Schwarz H (1995) Organometallics 14(3):1284–1291

    Article  Google Scholar 

  82. Heinemann C, Schwarz H, Koch W, Dyall KG (1996) J Chem Phys 104(12):4642–4651

    Article  CAS  Google Scholar 

  83. Schröder D, Schwarz H, Hrušák J, Pyykkö P (1998) Inorg Chem 37(4):624–632

    Article  Google Scholar 

  84. Pyykkö P (2002) Angew Chem Int Ed Engl 41(19):3573–3578

    Article  Google Scholar 

  85. Schwarz H (2003) Angew Chem Int Ed Engl 42(37):4442–4454

    Article  CAS  Google Scholar 

  86. Armentrout PB (1990) Annu Rev Phys Chem 41(1):313–344

    Article  CAS  Google Scholar 

  87. Armentrout PB (1991) Science 251(4990):175–179

    Article  CAS  Google Scholar 

  88. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33(3):139–145

    Article  CAS  Google Scholar 

  89. Schwarz H (2004) Int J Mass Spectrom 237(1):75–105

    Article  CAS  Google Scholar 

  90. Poli R (2004) J Organomet Chem 689(24):4291–4304

    Article  CAS  Google Scholar 

  91. Harvey JN (2007) Phys Chem Chem Phys 9(3):331–343

    Article  CAS  Google Scholar 

  92. Harvey JN, Aschi M, Schwarz H, Koch W (1998) Theor Chem Acc 99(2):95–99

    CAS  Google Scholar 

  93. Landis CR, Morales CM, Stahl SS (2004) J Am Chem Soc 126(50):16302–16303

    Article  CAS  Google Scholar 

  94. Keith JM, Nielsen RJ, Oxgaard J, Goddard WA (2005) J Am Chem Soc 127(38):13172–13179

    Article  CAS  Google Scholar 

  95. Popp B, Wendlandt J, Landis CR, Stahl SS (2007) Angew Chem Int Ed 46(4):601–604

    Article  CAS  Google Scholar 

  96. Keith JM, Goddard WA (2009) J Am Chem Soc 131(4):1416–1425

    Article  CAS  Google Scholar 

  97. Popp BV, Morales CM, Landis CR, Stahl SS (2010) Inorg Chem 49(18):8200–8207

    Article  CAS  Google Scholar 

  98. Lanci MP, Brinkley DW, Stone KL, Smirnov VV, Roth JP (2005) Angew Chem Int Ed Engl 44(44):7273–7276

    Article  CAS  Google Scholar 

  99. Wang R, Zhang XH, Chen SJ, Yu X, Wang CS, Beach DB, Wu YD, Xue ZL (2005) J Am Chem Soc 127(14):5204–5211

    Article  CAS  Google Scholar 

  100. Chen SJ, Zhang XH, Yu X, Qiu H, Yap GPA, Guzei IA, Lin Z, Wu YD, Xue ZL (2007) J Am Chem Soc 129(46):14408–14421

    Article  CAS  Google Scholar 

  101. Huber S, Ertem M, Aquilante F, Gagliardi L, Tolman W, Cramer C (2009) Chem Eur J 15(19):4886–4895

    Article  CAS  Google Scholar 

  102. Yu H, Fu Y, Guo Q, Lin Z (2009) Organometallics 28(15):4443–4451

    Article  CAS  Google Scholar 

  103. Zhang X, Schlangen M, Baik M-H, Dede Y, Schwarz H (2009) Helv Chim Acta 92(1):151–164

    Article  CAS  Google Scholar 

  104. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107(1):48–55

    CAS  Google Scholar 

  105. Zhang X, Schwarz H (2010) Chem Eur J 16(20):5882–5888

    CAS  Google Scholar 

  106. Pyykkö P, Riedel S, Patzschke M (2005) Chem Eur J 11(12):3511–3520

    Article  CAS  Google Scholar 

  107. Pyykkö P, Atsumi M (2009) Chem Eur J 15(1):186–197

    Article  CAS  Google Scholar 

  108. Pyykkö P, Atsumi M (2009) Chem Eur J 15(46):12770–12779

    Article  CAS  Google Scholar 

  109. Carter EA, Goddard WA (1988) J Phys Chem 92(8):2109–2115

    Article  CAS  Google Scholar 

  110. Carter EA, Goddard WA (1988) J Phys Chem 92(20):5679–5683

    Article  CAS  Google Scholar 

  111. Schröder D, Schwarz H, Harvey JN (2000) J Phys Chem A 104(48):11257–11260

    Article  CAS  Google Scholar 

  112. Miliordos E, Mavridis A (2007) J Phys Chem A 111(10):1953–1965

    Article  CAS  Google Scholar 

  113. Miliordos E, Mavridis A (2010) J Phys Chem A 114(33):8536–8572

    Article  CAS  Google Scholar 

  114. Fisher ER, Elkind JL, Clemmer DE, Georgiadis R, Loh SK, Aristov N, Sunderlin LS, Armentrout PB (1990) J Chem Phys 93(4):2676–2691

    Article  CAS  Google Scholar 

  115. Armentrout PB, Kickel BL, (1996) in Organometallic Ion Chemistry, Ed. Freiser BS (Kluwer, Dordrecht, 1996) 1

  116. Rodgers MT, Walker B, Armentrout PB (1999) Int J Mass Spectrom 182–183:99–120

    Google Scholar 

  117. Clemmer DE, Dalleska NF, Armentrout PB (1991) J Chem Phys 95(10):7263–7268

    Article  CAS  Google Scholar 

  118. Dalleska NF, Armentrout PB (1994) Int J Mass Spectrom Ion Processes 134(2–3):203–212

    Article  CAS  Google Scholar 

  119. Sievers MR, Chen Y-M, Armentrout PB (1996) J Chem Phys 105(15):6322–6333

    Article  CAS  Google Scholar 

  120. Chen Y-M, Armentrout PB (1995) J Chem Phys 103(2):618–625

    Article  CAS  Google Scholar 

  121. Murad E (1981) J Chem Phys 75(8):4080–4085

    Article  CAS  Google Scholar 

  122. Hinton CS, Li F, Armentrout PB (2009) Int J Mass Spectrom 280(1–3):226–234

    CAS  Google Scholar 

  123. Irikura KK, Beauchamp JL (1991) J Phys Chem 95(21):8344–8351

    Article  CAS  Google Scholar 

  124. Irikura KK, Beauchamp JL (1989) J Am Chem Soc 111(1):75–85

    Article  CAS  Google Scholar 

  125. Zhang XG, Armentrout PB (2003) J Phys Chem A 107(42):8904–8914

    Article  CAS  Google Scholar 

  126. Li FX, Gorham K, Armentrout PB (2010) J Phys Chem A 114(42):11043–11052

    Article  CAS  Google Scholar 

  127. Clemmer DE, Aristov N, Armentrout PB (1993) J Phys Chem 97(3):544–552

    Article  CAS  Google Scholar 

  128. Clemmer DE, Chen Y-M, Khan FA, Armentrout PB (1994) J Phys Chem 98(26):6522–6529

    Article  CAS  Google Scholar 

  129. Chen Y-M, Clemmer DE, Armentrout PB (1994) J Am Chem Soc 116(17):7815–7826

    Article  CAS  Google Scholar 

  130. Dzidic I, Kebarle P (1970) J Phys Chem 74(7):1466–1474

    Article  CAS  Google Scholar 

  131. Kochanski E, Constantin E (1987) J Chem Phys 87(3):1661–1665

    Article  CAS  Google Scholar 

  132. Magnera TF, David DE, Michl J (1989) J Am Chem Soc 111(11):4100–4101

    Article  CAS  Google Scholar 

  133. Dalleska NF, Honma K, Sunderlin LS, Armentrout PB (1994) J Am Chem Soc 116(8):3519–3528

    Article  CAS  Google Scholar 

  134. Schultz RH, Armentrout PB (1993) J Phys Chem 97(3):596–603

    Article  CAS  Google Scholar 

  135. Koizumi H, Larson M, Muntean F, Armentrout PB (2003) Int J Mass Spectrom 228(2–3):221–235

    CAS  Google Scholar 

  136. Li S, Dixon DA (2007) J Phys Chem A 111(46):11908–11921

    Article  CAS  Google Scholar 

  137. Bauschlicher CW, Gutsev GL (2002) Theor Chem Acc 107(5):309–312

    CAS  Google Scholar 

  138. Cundari TR, Harvey JN, Klinckman TR, Fu W (1999) Inorg Chem 38(24):5611–5615

    Article  CAS  Google Scholar 

  139. Rue C, Armentrout PB, Kretzschmar I, Schröder D, Schwarz H (2002) J Phys Chem A 106(42):9788–9797

    Article  CAS  Google Scholar 

  140. Armentrout PB, Kretzschmar I (2009) Inorg Chem 48(21):10371–10382

    Article  CAS  Google Scholar 

  141. Liu F, Zhang X-G, Armentrout PB (2005) Phys Chem Chem Phys 7(5):1054–1064

    Article  CAS  Google Scholar 

  142. Roithová J, Schröder D (2009) Coord Chem Rev 253(5–6):666–677

    Article  CAS  Google Scholar 

  143. Lin Z (2010) Acc Chem Res 43(5):602–611

    Article  CAS  Google Scholar 

  144. Schwarz J, Schröder D, Schwarz H, Heinemann C, Hrušák J (1996) Helv Chim Acta 79(4):1110–1120

    Article  CAS  Google Scholar 

  145. Vukomanovic D, Stone JA (2000) Int J Mass Spectrom 202(1–3):251–259

    CAS  Google Scholar 

  146. Ricca A, Bauschlicher CW (1997) J Phys Chem A 101(47):8949–8955

    Article  CAS  Google Scholar 

  147. Schröder D, Souvi SO, Alikhani E (2009) Chem Phys Lett 470(4–6):162–165

    Article  CAS  Google Scholar 

  148. Cheng P, Koyanagi GK, Bohme DK (2007) J Phys Chem A 111(35):8561–8573

    Article  CAS  Google Scholar 

  149. Schröder D (2008) J Phys Chem A 112(50):13215–13224

    Article  CAS  Google Scholar 

  150. Kang H, Beauchamp JL (1986) J Am Chem Soc 108(24):7502–7509

    Article  CAS  Google Scholar 

  151. Janardanan D, Wang Y, Schyman P, Que L, Shaik S (2010) Angew Chem Int Ed 49(19):3342–3345

    CAS  Google Scholar 

  152. Gilbert JA, Eggleston DS, Murphy WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107(13):3855–3864

    Article  CAS  Google Scholar 

  153. Yang X, Baik M-H (2006) J Am Chem Soc 128(23):7476–7485

    Article  CAS  Google Scholar 

  154. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108(46):17886–17892

    Article  CAS  Google Scholar 

  155. Stahl SS (2004) Angew Chem Int Ed Engl 43(26):3400–3420

    Article  CAS  Google Scholar 

  156. Stahl SS (2005) Science 309(5742):1824–1826

    Article  CAS  Google Scholar 

  157. Ryan MF, Fiedler A, Schröder D, Schwarz H (1995) J Am Chem Soc 117(7):2033–2040

    Article  CAS  Google Scholar 

  158. de Macedo LGM, Pyykkö P (2008) Chem Phys Lett 462(1–3):138–143

    Article  CAS  Google Scholar 

  159. Roos BO, Pyykkö P (2010) Chem Eur J 16(1):270–275

    Article  CAS  Google Scholar 

  160. Pyykkö P (2010) Phys Chem Chem Phys. doi:10.1039/C0CP01575J

Download references

Acknowledgments

Financial support by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft (“Cluster of Excellence: Unifying Concepts in Catalysis”) and, for computational resources, the Institut für Mathematik at the Technische Universität Berlin are acknowledged. We thank Dr. Detlef Schröder and Burkhard Butschke for helpful suggestions. X. Z. is grateful to the Alexander von Humboldt-Stiftung for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhao Zhang or Helmut Schwarz.

Additional information

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Schwarz, H. Bonding in cationic MOH + n (M = K − La, Hf − Rn; n = 0–2): DFT performances and periodic trends. Theor Chem Acc 129, 389–399 (2011). https://doi.org/10.1007/s00214-010-0861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0861-0

Keywords

Navigation