Skip to main content
Log in

Unimolecular decomposition mechanism of vinyl alcohol by computational study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Although vinyl alcohol(CH2=CHOH)molecule was found to be an important intermediate in the combustion flames of hydrocarbon (Taatjes et al. in Science 308:1887, 2005), the removal mechanism of vinyl alcohol has not been established yet. The removal mechanism is critical to characterize the kinetics behavior of hydrocarbon in combustion chemistry and to develop the chemical models of hydrocarbon oxidation. In this work, the potential energy surface for the unimolecular decomposition of syn-CH2=CHOH reaction has been first studied by ab initio. The kinetics and product branching ratios for the decomposition reaction are evaluated by Variflex code in the temperature range of 500–3,000 K at 0.1, 1.0, and 100.0 atmosphere pressure. The results show that the formation of CH3 + CHO via the CH3CHO intermediate is dominant in the decomposition reaction and its branching ratios at 0.1, 1.0, and 100.0 atm are more than 99.90, 99.30, and 89.20%, respectively, through the whole temperature range investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Erlenmeyer E (1880) Chem Ber 13:305

    Article  Google Scholar 

  2. Saito S (1976) Chem Phys Lett 42:399

    Article  CAS  Google Scholar 

  3. Toullec J, El-Alaoui MJ (1986) Org Chem 51:4054

    Article  CAS  Google Scholar 

  4. Capon B, Guo BZ, Kwok FC, Siddhanta AK, Zucco C (1988) Acc Chem Res 21:135

    Article  CAS  Google Scholar 

  5. Hart H (1979) Chem Rev 79:515

    Article  CAS  Google Scholar 

  6. Senosiain JP, Klippenstein SJ, Miller JA (2006) J Phys Chem A 110:6960

    Article  CAS  Google Scholar 

  7. Chandra AK, Thérèse ZH (2003) J Org Chem 68:3618

    Article  CAS  Google Scholar 

  8. Smith BJ, Nguyen MT, Bouma WJ, Radom L (1991) J Am Chem Soc 113:6452

    Article  CAS  Google Scholar 

  9. Cool TA, Nakajima K, Mostefaoui TA, Qi F, McIlroy A, Westmoreland PR, Law ME, Poisson L, Peterka DS, Ahmed M (2003) J Chem Phys 119:8356

    Article  CAS  Google Scholar 

  10. Taatjes CA, Hansen N, McIlroy A, Miller JA, Senosiain JP, Klippenstein SJ, Qi F, Sheng L, Zhang Y, Cool TA, Wang J, Westmoreland PR, Law ME, Kasper T, Kohse-Höinghaus K (2005) Science 308:1887

    Article  CAS  Google Scholar 

  11. Yamada T, Bozzelli JW, Lay T (1999) J Phys Chem A 103:7646

    Article  CAS  Google Scholar 

  12. Hippler H, Viskolcz B (2000) Phys Chem Chem Phys 2:3591

    Article  CAS  Google Scholar 

  13. Taatjes CA, Hansen N, Miller JA (2006) J Phys Chem A 110:3254

    Article  CAS  Google Scholar 

  14. Rodler M, Bauder A (1984) J Am Chem Soc 106:4025

    Article  CAS  Google Scholar 

  15. Tureček F, Cramer CJ (1995) J Am Chem Soc 117:12243

    Article  Google Scholar 

  16. Silva GD, Kim CH, Bozzelli JW (2006) J Phys Chem A 110:7925

    Article  Google Scholar 

  17. Becke AD (1992) J Chem Phys 96:2155

    Article  CAS  Google Scholar 

  18. Becke AD (1992) J Chem Phys 97:9173

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  20. Hehre W, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  21. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937

    Google Scholar 

  22. Gonzalez C, Schlegel HB (1989) J Phys Chem 90:2154

    Article  CAS  Google Scholar 

  23. Raghavachari K, Trucks GW, Pople JA, Head-Gordon G (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (revision B.05)

  25. Klippenstein SJ, Wagner AF, Dunbar RC, Wardlaw DM, Robertson SH (1999) VariFlex version 1.0. Argonne National Laboratory, Argonne

    Google Scholar 

  26. Beyer T, Swinehart DF (1973) Commun Assoc Comput Mach 16:379

    Google Scholar 

  27. Stein SE, Rabinovitch BS (1973) J Phys Chem 58:2438

    Article  CAS  Google Scholar 

  28. Gilbert RG, Smith SC (1990) Theory of unimolecular and recombination reactions. Blackwell, Carlton

    Google Scholar 

  29. Holbrook KA, Pilling MJ, Robertson SH (1996) Unimolecular reactions. Wiley, New York

    Google Scholar 

  30. Miller JA, Klippenstein SJ (2003) J Phys Chem A 107:2680

    Google Scholar 

  31. Miller JA, Klippenstein SJ, Raffy C (2002) J Phys Chem A 106:4904

    Article  CAS  Google Scholar 

  32. Miller JA, Klippenstein SJ, Robertson SH (2000) J Phys Chem A 104:7525

    Article  CAS  Google Scholar 

  33. Fernandez-Ramos A, Miller J, Klippenstein S, Truhlar D (2006) Chem Rev 106:4518

    Article  CAS  Google Scholar 

  34. Miller J, Klippenstein S (2006) J Phys Chem A 110:10528

    Article  CAS  Google Scholar 

  35. Zhou CW, Li ZR, Liu CX, Li XY (2008) J Chem Phys 129:234301

    Article  Google Scholar 

  36. Park J, Zhu RS, Lin MC (2002) J Chem Phys 117:3224

    Article  CAS  Google Scholar 

  37. Matti GY, Osman OI, Upham JE, Suffolk RJ, Kroto HW (1989) J Electron Spectrosc Relat Phenom 49:195

    Article  CAS  Google Scholar 

  38. Rodler M (1985) J Mol Spectrosc 114:23

    Article  CAS  Google Scholar 

  39. Bouma WJ, Adom L (1978) J Mol Struct 43:267

    Article  CAS  Google Scholar 

  40. Yasunaga K, Kubo S, Hoshikawa H, Kamesawa T, Hidaka Y (2008) Int J Chem Kinet 40:73

    Article  CAS  Google Scholar 

  41. Gupte KS, Kiefer JH, Tranter RS, Klippenstein SJ, Harding LB (2007) Proc Combust Inst 31:167

    Article  Google Scholar 

  42. Bentz T, Striebel F, Olzmann M (2008) J Phys Chem A 112:6120

    Article  CAS  Google Scholar 

  43. Horowltz A, Calvert JG (1982) J Phys Chem 86:3105

    Article  Google Scholar 

  44. Joshi A, You XQ, Barckholtz TA, Wang H (2005) J Phys Chem A 109:8016

    Article  CAS  Google Scholar 

  45. Yadav JS, Goddard JD (1986) J Chem Phys 84:2682

    Article  CAS  Google Scholar 

  46. Nilsson EJK, Bache-Andreassen L, Johnson MS, Nielsen CJ (2009) J Phys Chem A 113:3498

    Article  CAS  Google Scholar 

  47. Harding LB, Georgievskii Y, Klippenstein SJ (2010) J Phys Chem A 114:765

    Article  CAS  Google Scholar 

  48. Tardy DC, Rabinovitch BS (1977) Chem Rev 77:369

    Article  CAS  Google Scholar 

  49. Quack M, Troe J (1977) In: Asmore PG, Donovan RJ (eds) Gas kinetics and energy transfer, vol 2. The Chemical Society, London

  50. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

  51. Mourits FM, Rummens HA (1977) Can J Chem 55:3007

    Article  CAS  Google Scholar 

  52. Zhu RS, Lin MC (2004) Chem Phys Chem 5:1864

    CAS  Google Scholar 

  53. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Nos. 91016002, 20973118) and by the Natural Science Foundation of the Education Department of Sichuan Province in China (No.09ZA144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, JX., Gong, CM., Li, XY. et al. Unimolecular decomposition mechanism of vinyl alcohol by computational study. Theor Chem Acc 128, 341–348 (2011). https://doi.org/10.1007/s00214-010-0860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0860-1

Keywords

Navigation