Skip to main content
Log in

Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Most known DNA-dependent RNA polymerases (RNAPs) share a universal heptapeptide, called the NADFDGD motif. The crystal structures of RNAPs indicate that in all cases this motif forms a loop with an embedded triad of aspartic acid residues. This conserved loop is the key part of the active site. Based on the crystal structures of the yeast RNAP II, we have studied this common active site for three cases: (1) single RNAP, (2) pre-translocation elongation complex, and (3) post-translocation elongation complex. Here we have applied two different modeling methods, the GGA density functional theory method (PBE) of quantum mechanics (QM) and the ReaxFF reactive force field. The QM calculations indicate that the loop shrinks from pre- to post-translocation and expands from post- to pre- translocation. In addition, PBE MD simulations in the gas phase at 310 K shows that the loop in the single-RNAP case is tightly connected to a catalytic Mg 2+ ion and that there is an ordered hydrogen bond network in the loop. The corresponding ReaxFF MD simulation presents a less stable loop structure, suggesting that ReaxFF may underestimate the coordinating interactions between carbonyl oxygen and magnesium ion compared to the gas phase QM. However, with ReaxFF it was practical to study the dynamics for a much more detailed model for the post-translocational case, including the complete loop and solvent. This leads to a plausible reactant-side model that may explain the large difference in efficiency of NTP polymerization between RNA and DNA polymerases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steitz TA (1998) Nature 391: 231–232

    Article  CAS  Google Scholar 

  2. Sonntag K-C, Darai G (1996) Virus Genes 11: 271–284

    Article  Google Scholar 

  3. Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K (2001) Proc Natl Acad Sci USA 98: 892–897

    Article  CAS  Google Scholar 

  4. Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S (2002) Nature 417: 712–719

    Article  CAS  Google Scholar 

  5. Armache K-J, Mitterweger S, Meinhart A, Cramer P (2005) J Biol Chem 280: 7131–7134

    Article  CAS  Google Scholar 

  6. Sosunov V, Zorov S, Sosunova E, Nikolaev A, Zakeyeva I, Bass I, Goldfarb A, Nikiforov V, Severinov K, Mustaev A (2005) Nucleic Acids Res 33: 4202–4211

    Article  CAS  Google Scholar 

  7. Westover KD, Bushnell DA, Kornberg RD (2004) Cell 119: 481–489

    Article  CAS  Google Scholar 

  8. Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Cell 127: 941–954

    Article  CAS  Google Scholar 

  9. Steitz TA (1993) Curr Opin Struct Biol 3: 31–38

    Article  CAS  Google Scholar 

  10. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77: 3865–3868

    Article  CAS  Google Scholar 

  11. van Duin ACT, Dasgupta S, Lorant F, Goddard WA III (2001) J Phys Chem A 105: 9396–9409

    Article  Google Scholar 

  12. Nielson KD, van Duin ACT, Oxgaard J, Deng WQ, Goddard WA (2005) J Phys Chem A 109: 493–499

    Article  CAS  Google Scholar 

  13. Abashkin YG, Erickson JW, Burt SK (2001) J Phys Chem B 105: 287–292

    Article  CAS  Google Scholar 

  14. Rittenhouse RC, Apostoluk WK, Miller JH, Straatsma TP (2003) Proteins 53: 667–682

    Article  CAS  Google Scholar 

  15. Florian J, Goodman MF, Warshel A (2003) J Am Chem Soc 125: 8163–8177

    Article  CAS  Google Scholar 

  16. Köster AM, Calaminici P, Casida ME, Flores-Moreno R, Geudtner G, Goursot A, Heine T, Ipatov A, Janetzko F, Martin del Campo J, Patchkovskii S, Reveles JU, Salahub DR, Vela A (2006) deMon2k

  17. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Phys 70: 560–571

    CAS  Google Scholar 

  18. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) J Chem Phys 126: 044108

    Article  Google Scholar 

  19. Maguire ME, Cowan JA (2002) Biometals 15: 203–210

    Article  CAS  Google Scholar 

  20. Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J (1996) Biochemistry 35: 12742–12761

    Article  CAS  Google Scholar 

  21. Li Y, Korolev S, Waksman G (1998) EMBO J 17: 7514–7525

    Article  CAS  Google Scholar 

  22. Vassylyev DG, Vassylyeva MN, Zhang JW, Palangat M, Artsimovitch I, Landick R (2007) Nature 448: 163–U164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis R. Salahub.

Additional information

Contribution to the Nino Russo Special Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, R., Janetzko, F., Zhang, Y. et al. Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations. Theor Chem Account 120, 479–489 (2008). https://doi.org/10.1007/s00214-008-0440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0440-9

Keywords

Navigation