Skip to main content
Log in

Structure and Stability of Isomers of the Promising Interstellar Molecule PC3O

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

DFT/B3LYP/6-311G(d) and CCSD(T)/6-311G(2d) single-point calculations are carried out for exploring the doublet potential energy surface (PES) of PC3O, a molecule of potential interest in interstellar chemistry. A total of 29 minima connected by 65 interconversion transition states are located. The structures of the most relevant isomers and transition states are further optimized at the QCISD level followed by CCSD(T) single-point energy calculations. At the CCSD(T)/6-311G(2df)//QCISD/6-311G(d)+ZPVE level, the global minimum is the quasi-linear structure PCCCO 1 (0.0 kcal/mol) with a great kinetic stability of 47.9 kcal/mol, and the cumulenic form \({\mathop P\limits_ - ^ \bullet}=C=C=C={\mathop O\limits_ - ^ -}\) features largely in its resonance structures. Moreover, the chainlike isomer OPCCC 3 (64.5) and five-membered-ring species cPCCCO 19 (77.8) possess considerable kinetic stability of about 18.0 kcal/mol. All these three isomers are very promising candidates for future experimental and astrophysical detection. Additionally, a three-membered-ring isomer CC-cCOP 10 (69.6) has slightly lower kinetic stability of around 15 kcal/mol and may also be experimentally observable. Possible formation mechanisms of the four stable isomers in interstellar space are discussed. The present research is the first attempt to study the isomerization and dissociation mechanisms of PC n O series. The predicted spectroscopic properties, including harmonic vibrational frequencies, dipole moments and rotational constants for the relevant isomers, are expected to be informative for the identification of PC3O in laboratory and interstellar medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaiser RI (2002). Chem Rev 102:1309

    Article  CAS  Google Scholar 

  2. Winnewisser G, Kramer C (1999). Space Sci Rev 90:181

    Article  CAS  Google Scholar 

  3. Largo A, Barrientos C, Lopez X, Ugalde JM (1994). J Phys Chem 98:3985

    Article  CAS  Google Scholar 

  4. del Rio E, Barrientos C, Largo A (1996). J Phys Chem 100:585

    Article  CAS  Google Scholar 

  5. Zhan CG, Iwata S (1997). J Chem Phys 107:7323

    Article  CAS  Google Scholar 

  6. Pascoli G, Lavendy H (1999). J Phys Chem A 103:3518

    Article  CAS  Google Scholar 

  7. Li GL, Tang ZC (2003). J Phys Chem A 107:5317

    Article  CAS  Google Scholar 

  8. Millar TJ (1991). Astron Astrophys 242:241

    Google Scholar 

  9. Sumiyoshi Y, Takada H, Endo Y (2004). Chem Phys Lett 387:116

    Article  CAS  Google Scholar 

  10. McCarthy MC, Cooksy AL, Mohamed S, Gordon VD, Thaddeus P (2003). Astrophys J Suppl Ser 144:287

    Article  CAS  Google Scholar 

  11. Yu GT, Ding YH, Huang XR, Chen GH, Tang AC (2004). J Phys Chem A 108:10723

    Article  CAS  Google Scholar 

  12. Nakajima M, Yoneda Y, Sumiyoshi Y, Endo Y (2004). J Chem Phys 120:2662

    Article  CAS  Google Scholar 

  13. Pedersen CT, Fanghanel E, Flammang R (2001). J Chem Soc Perkin Trans 2:356

    Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.9. Gaussian, Inc., Pittsburgh

  15. Karlström G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003). Comput Mater Sci 28:222

    Article  Google Scholar 

  16. Reed AE, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735

    Article  CAS  Google Scholar 

  17. Yu GT, Ding YH, Huang XR, Sun CC (2005). J Phys Chem A 109:1594

    Article  CAS  Google Scholar 

  18. Ding YH, Liu JL, Huang XR, Li ZS, Sun CC (2001). J Chem Phys 114:5170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Ri Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Huang, XR., Yu, GT. et al. Structure and Stability of Isomers of the Promising Interstellar Molecule PC3O. Theor Chem Acc 115, 410–426 (2006). https://doi.org/10.1007/s00214-006-0122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0122-4

Keywords

Navigation