Skip to main content
Log in

Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Sequences of basis sets that systematically converge towards the complete basis set (CBS) limit have been developed for the coinage metals (Cu, Ag, Au) and group 12 elements (Zn, Cd, Hg). These basis sets are based on recently published small-core relativistic pseudopotentials [Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227] and range in size from double- through quintuple-ζ. Series of basis sets designed for valence-only and outer-core electron correlation are presented, as well as these sets augmented by additional diffuse functions for the accurate description of negative ions and weak interactions. Selected benchmark calculations at the coupled cluster level of theory are presented for both atomic and molecular properties. The latter include the calculation of both spectroscopic and thermochemical properties of the homonuclear dimers Cu2, Ag2, and Au2, as well as the van der Waals species Zn2, Cd2, and Hg2. The CBS limit results, including the effects of core-valence correlation and spin-orbit coupling, represent some of the most accurate carried out to date and result in new recommendations for the equilibrium bond lengths of the group 12 dimers. Comparisons are also made to a limited number of all-electron Douglas–Kroll–Hess (DKH) calculations (second and third order) carried out using new correlation consistent basis sets of triple-ζ quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070

    Google Scholar 

  2. Dunning TH, Jr. (1989) J Chem Phys 90:1007–1023

    Google Scholar 

  3. Dunning TH, Jr. (2000) J Phys Chem A 104:9062–9080

    Google Scholar 

  4. Feller D, Peterson KA, de Jong WA, Dixon DA (2003) J Chem Phys 118:3510–3522

    Google Scholar 

  5. Balabanov NB, Peterson KA (2003) J Phys Chem A 107:7465–7470

    Google Scholar 

  6. Boese AD, Oren M, Atasoylu O, Martin JML (2004) J Chem Phys 120:4129–4141

    Google Scholar 

  7. Schuurman MS, Muir SR, Allen WD, Schaefer HF, III (2004) J Chem Phys 120:11586–11599

    Google Scholar 

  8. Peterson KA (2003) J Chem Phys 119:11099–11112

    Google Scholar 

  9. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    Google Scholar 

  10. Bauschlicher CW, Jr. (1999) Theor Chem Acc 103:141–145

    Google Scholar 

  11. Ricca A, Bauschlicher CW, Jr. (2001) Theor Chem Acc 106:314–318

    Google Scholar 

  12. Balabanov NB, Peterson KA J Chem Phys (in press)

  13. Osanai Y, Sekiya M, Noro T, Koga T (2003) Mol Phys 101:65–71

    Google Scholar 

  14. Dyall KG (2004) Theor Chem Acc 112:403–409

    Google Scholar 

  15. Dobbs KD, Hehre WJ (1987) J Comp Chem 8:880–893

    Google Scholar 

  16. Walch SP, Bauschlicher CW, Jr., Nelin CJ (1983) J Chem Phys 79:3600–3602

    Google Scholar 

  17. Kellö V, Sadlej AJ (1996) Theor Chim Acta 94:93–104

    Google Scholar 

  18. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Google Scholar 

  19. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Google Scholar 

  20. LaJohn LA, Christiansen PA, Ross RB, Atashroo T, Ermler WC (1987) J Chem Phys 87:2812–2824

    Google Scholar 

  21. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612–630

    Google Scholar 

  22. Ross RB, Powers JM, Atashroo T, Ermler WC, LaJohn LA, Christiansen PA (1990) J Chem Phys 93:6654–6670

    Google Scholar 

  23. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Google Scholar 

  24. Metz B, Schweizer M, Stoll H, Dolg M, Liu W (2000) Theor Chem Acc 104:22–28

    Google Scholar 

  25. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569

    Google Scholar 

  26. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227–244

    Google Scholar 

  27. Tsuchiya T, Abe M, Nakajima T, Hirao K (2001) J Chem Phys 115:4463–4472

    Google Scholar 

  28. Nakajima T, Hirao K (2002) J Chem Phys 116:8270–8275

    Google Scholar 

  29. Douglas M, Kroll NM (1974) Ann Phys (New York) 82:89–155

    Google Scholar 

  30. Jansen G, Hess BA (1989) Phys Rev A 39:6016–6017

    Google Scholar 

  31. Peterson KA (2005) In: Wilson AK, Peterson KA (eds) Recent advances in electron correlation methodology. ACS

  32. Häussermann U, Dolg M, Stoll H, Preuss H, Schwerdtfeger P, Pitzer RM (1993) Mol Phys 78:1211–1224

    Google Scholar 

  33. Peterson KA, Figgen D, Stoll H, Dolg M (to be published)

  34. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipies in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

  35. MOLPRO, a package of ab initio programs designed by Werner H-J, Knowles PJ, version 2002.6, Amos RD, Bernhardsson A, Berning A, Celani P, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Knowles PJ, Korona T, Lindh R, Lloyd AW, McNicholas SJ, Manby FR, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schütz M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Werner H-J (2002)

  36. Blaudeau J-P, Brozell SR, Matsika S, Zhang Z, Pitzer RM (2000) Int J Quantum Chem 77:516–520

    Google Scholar 

  37. Christiansen PA (2000) J Chem Phys 112:10070–10074

    Google Scholar 

  38. Ruedenberg K, Raffenetti RC, Bardo RD (1973) ``Energy, structure and reactivity, Proceedings of the 1972 Boulder conference on theoretical chemistry'', Wiley, New York

  39. Feller DF, Ruedenberg K (1979) Theor Chim Acta 52:231–251

    Google Scholar 

  40. Martin JML, Sundermann A (2001) J Chem Phys 114:3408–3420

    Google Scholar 

  41. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872

    Google Scholar 

  42. Peterson KA, Dunning TH, Jr. (2002) J Chem Phys 117:10548–10560

    Google Scholar 

  43. Petersson GA, Zhong S, Montgomery JA, Jr., Frisch MJ (2003) J Chem Phys 118:1101–1109

    Google Scholar 

  44. Partridge H, Faegri K, Jr. (1992) Theor Chim Acta 82:207–212

    Google Scholar 

  45. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Google Scholar 

  46. Hampel C, Peterson KA, Werner H-J (1992) Chem Phys Lett 190:1–12

    Google Scholar 

  47. Rittby M, Bartlett RJ (1988) J Phys Chem 92:3033–3036

    Google Scholar 

  48. Scuseria GE (1991) Chem Phys Lett 176:27–35

    Google Scholar 

  49. Knowles PJ, Hampel C, Werner H-J (1994) J Chem Phys 99:5219–5227

    Google Scholar 

  50. Knowles PJ, Hampel C, Werner H-J (2000) J Chem Phys 112:3106–3107

    Google Scholar 

  51. Dunham JL (1932) Phys Rev 41:721

  52. Boys SF, Bernardi F (1970) Mol Phys 19:553

  53. Woon DE, Dunning TH, Jr. (1994) J Chem Phys 100:2975

    Google Scholar 

  54. COLUMBUS, an ab initio electronic structure program, release 5.8 (2001); Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Müller Th, Szalay PG, Brown FB, Ahlrichs R, Böhm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Höchtl P, Irle S, Kedziora G, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schüler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z (2001)

  55. Yabushita S, Zhang Z, Pitzer RM (1999) J Phys Chem A 103:5791–5800

    Google Scholar 

  56. Nakajima T, Hirao K (2000) J Chem Phys 113:7786–7789

    Google Scholar 

  57. Nakajima T, Hirao K (2003) J Chem Phys 119:4105–4111

    Google Scholar 

  58. Yanai T, Iikura H, Nakajima T, Ishikawa Y, Hirao K (2001) J Chem Phys 115:8267–8273

    Google Scholar 

  59. UTChem [2004 β]: Yanai T, Kamiya M, Kawashima Y, Nakajima T, Nakano H, Nakao Y, Sekino H, Paulovic J, Tsuneda T, Yanagisawa S, Hirao K (2004)

  60. Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639–9645

    Google Scholar 

  61. Halkier A, Helgaker T, JØrgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252

    Google Scholar 

  62. Peterson KA, Woon DE, Dunning TH, Jr. (1994) J Chem Phys 100:7410–7415

    Google Scholar 

  63. Dixon DA, de Jong WA, Peterson KA, McMahon TB (2005) J Phys Chem A 109:4073–4080

    Google Scholar 

  64. Hess BA, Kaldor U (2000) J Chem Phys 112:1809–1813

    Google Scholar 

  65. Fleig T, Visscher L (2005) Chem Phys 311:113–120

    Google Scholar 

  66. Ran Q, Schmude RWJ, Gingerich KA, Wilhite DW, Kingcade JEJ (1993) J Phys Chem 97:8535–8540

    Google Scholar 

  67. van Lenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys 105:6505

    Google Scholar 

  68. Lee H-S, Han Y-K, Kim MC, Bae C, Lee YS (1998) Chem Phys Lett 293:97–102

    Google Scholar 

  69. Shepler BC, Peterson KA (2003) J Phys Chem A 107:1783–1787

    Google Scholar 

  70. Balabanov NB, Peterson KA (2003) J Chem Phys 119:12271–12278

    Google Scholar 

  71. Puzzarini C, Peterson KA (2005) Chem Phys 311:177–186

    Google Scholar 

  72. Yu M, Dolg M (1997) Chem Phys Lett 273:329–336

    Google Scholar 

  73. Czajkowski MA, Koperski J (1999) Spectrochim Acta A 55:2221–2229

    Google Scholar 

  74. Ceccherini S, Moraldi M (2001) Chem Phys Lett 337:386–390

    Google Scholar 

  75. Ellingsen K, Saue T, Pouchan C, Gropen O (2005) Chem Phys 311:35–44

    Google Scholar 

  76. Zehnacker A, Duval MC, Jouvet C, C. L-D, Solgadi D, Soep B, D`Azy OB (1987) J Chem Phys 86:6565–6566

  77. van Zee RD, Blankkespoor SC, Zwier TS (1988) J Chem Phys 88:4650–4654

    Google Scholar 

  78. Koperski J, Atkinson JB, Krause L (1994) Chem Phys Lett 219:161–168

    Google Scholar 

  79. Koperski J, Atkinson JB, Krause L (1994) Can J Phys 72:1070–1077

    Google Scholar 

  80. Koperski J, Atkinson JB, Krause L (1997) J Mol Spectrosc 184:300–308

    Google Scholar 

  81. Schwerdtfeger P, Wesendrup R, Moyano GE, Sadlej AJ, Greif J, Hensel F (2001) J Chem Phys 115:7401–7412

    Google Scholar 

  82. Schwerdtfeger P, Li J, Pyykkö P (1994) Theor Chim Acta 87:313–320

    Google Scholar 

  83. Munro LJ, Johnson JK, Jordan KD (2001) J Chem Phys 114:5545–5551

    Google Scholar 

  84. Dolg M, Flad H-J (1996) J Phys Chem 100:6147–6151

    Google Scholar 

  85. Wesendrup R, Kloo L, Schwerdtfeger P (2000) Int J Mass Spectrom 201:17–21

    Google Scholar 

  86. Kunz CF, Hättig C, Hess BA (1996) Mol Phys 89:139–156

    Google Scholar 

  87. Feller D, http://www.emsl.pnl.gov/forms/basisform.html.

  88. Moore CE (1971) Atomic energy levels, NSRDS-NBS 35, Office of Standard Reference Data, National Bureau of Standards, Washington, DC

  89. Andersen T, Haugen HK, Hotop H (1999) J Phys Chem Ref Data 28:1511–1533

    Google Scholar 

  90. Loock H-P, Beaty LM, Simard B (1999) Phys Rev A 59:873–875

    Google Scholar 

  91. Ram RS, Jarman CN, Bernath PF (1992) J Mol Spectrosc 156:468–486

    Google Scholar 

  92. Rohlfing EA, Valentini JJ (1986) J Chem Phys 84:6560–6566

    Google Scholar 

  93. Kraemer H-G, Beutel V, Weyers K, Demtroeder W (1992) Chem Phys Lett 193:331–334

    Google Scholar 

  94. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of Diatomic molecules, Van Nostrand, Princeton, USA

  95. Simard B, Hackett PA (1994) J Mol Spectrosc 168:310–318

    Google Scholar 

  96. James AM, Kowalczyk P, Simard B, Pinegar JC, Morse MD (1994) J Mol Spectrosc 168:248–257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk A Peterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, K., Puzzarini, C. Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 114, 283–296 (2005). https://doi.org/10.1007/s00214-005-0681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0681-9

Keywords

Navigation