Skip to main content
Log in

Prenatal kynurenine treatment in rats causes schizophrenia-like broad monitoring deficits in adulthood

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Elevated brain kynurenic acid (KYNA) levels are implicated in the pathology and neurodevelopmental pathogenesis of schizophrenia. In rats, embryonic treatment with kynurenine (EKyn) causes elevated brain KYNA levels in adulthood and cognitive deficits reminiscent of schizophrenia.

Objectives

Growing evidence suggests that people with schizophrenia have a narrowed attentional focus, and we aimed at establishing whether these abnormalities may be related to KYNA dysregulation.

Methods

To test whether EKyn rats display broad monitoring deficits, kynurenine was added to the chow of pregnant Wistar dams on embryonic days 15–22. As adults, 20 EKyn and 20 control rats were trained to stable performance on the five-choice serial reaction time task, requiring the localization of 1-s light stimuli presented randomly across five apertures horizontally arranged along a curved wall, equating the locomotor demands of reaching each hole.

Results

EKyn rats displayed elevated omission errors and reduced anticipatory responses relative to control rats, indicative of a lower response rate, and showed reduced locomotor activity. The ability to spread attention broadly was measured by parsing performance by stimulus location. Both groups displayed poorer stimulus detection with greater target location eccentricity, but this effect was significantly more pronounced in the EKyn group. Specifically, the groups differed in the spatial distribution of correct but not incorrect responses. This pattern cannot be explained by differences in response rate and is indicative of a narrowed attentional focus.

Conclusions

The findings suggest a potential etiology of broad monitoring deficits in schizophrenia, which may constitute a core cognitive deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagbosu CO, Evans GC, Gulick D, Suckow RF, Bucci DJ (2012) Exposure to kynurenic acid during adolescence produces memory deficits in adulthood. Schizophr Bull 38:769–778

    Article  PubMed  Google Scholar 

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander KS, Wu HQ, Schwarcz R, Bruno JP (2012) Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology 220:627–637

    Article  CAS  PubMed  Google Scholar 

  • Alexander KS, Pocivavsek A, HQ W, Pershing ML, Schwarcz R, Bruno JP (2013) Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience 238:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amitai N, Markou A (2009) Increased impulsivity and disrupted attention induced by repeated phencyclidine are not attenuated by chronic quetiapine treatment. Pharmacol Biochem Behav 93:248–257

    Article  CAS  PubMed  Google Scholar 

  • Bagasrawala I, Zecevic N, Radonjic NV (2016) N-methyl d-aspartate receptor antagonist kynurenic acid affects human cortical development. Front Neurosci 10:435

    Article  PubMed  PubMed Central  Google Scholar 

  • Balu DT, Coyle JT (2015) The NMDA receptor ‘glycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond. Curr Opin Pharmacol 20:109–115

    Article  CAS  PubMed  Google Scholar 

  • Barnes SA, Sawiak SJ, Caprioli D, Jupp B, Buonincontri G, Mar AC, Harte MK, Fletcher PC, Robbins TW, Neill JC, Dalley JW (2014) Impaired limbic cortico-striatal structure and sustained visual attention in a rodent model of schizophrenia. Int J Neuropsychopharmacol 18

  • Chess AC, Simoni MK, Alling TE, Bucci DJ (2007) Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 33:797–804

    Article  PubMed  Google Scholar 

  • Chess AC, Landers AM, Bucci DJ (2009) L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav Brain Res 201:325–331

    Article  CAS  PubMed  Google Scholar 

  • DeAngeli NE, Todd TP, Chang SE, Yeh HH, Yeh PW, Bucci DJ (2014) Exposure to kynurenic acid during adolescence increases sign-tracking and impairs long-term potentiation in adulthood. Front Behav Neurosci 8:451

    PubMed  Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98

    Article  CAS  PubMed  Google Scholar 

  • Erhardt S, Schwieler L, Emanuelsson C, Geyer M (2004) Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 56:255–260

    Article  CAS  PubMed  Google Scholar 

  • Erhardt S, Schwieler L, Imbeault S, Engberg G (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 112:297–306

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35:528–548

    Article  PubMed  PubMed Central  Google Scholar 

  • Featherstone RE, Rizos Z, Nobrega JN, Kapur S, Fletcher PJ (2007) Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophrenia. Neuropsychopharmacology 32:483–492

    Article  CAS  PubMed  Google Scholar 

  • Forrest CM, McNair K, Pisar M, Khalil OS, Darlington LG, Stone TW (2015) Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience 310:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  CAS  PubMed  Google Scholar 

  • Gold JM, Hahn B, Strauss GP, Waltz JA (2009) Turning it upside down: areas of preserved cognitive function in schizophrenia. Neuropsychol Rev 19:294–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray BE, Hahn B, Robinson B, Harvey A, Leonard CJ, Luck SJ, Gold JM (2014) Relationships between divided attention and working memory impairment in people with schizophrenia. Schizophr Bull 40:1462–1471

    Article  PubMed  PubMed Central  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    Article  CAS  PubMed  Google Scholar 

  • Green MF, Kern RS, Heaton RK (2004) Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 72:41–51

    Article  PubMed  Google Scholar 

  • Hahn B, Shoaib M, Stolerman IP (2002) Nicotine-induced enhancement of attention in the five-choice serial reaction time task: the influence of task demands. Psychopharmacology 162:129–137

    Article  CAS  PubMed  Google Scholar 

  • Hahn B, Hollingworth A, Robinson BM, Kaiser ST, Leonard CJ, Beck VM, Kappenman ES, Luck SJ, Gold JM (2012a) Control of working memory content in schizophrenia. Schizophr Res 134:70–75

    Article  PubMed  Google Scholar 

  • Hahn B, Robinson BM, Harvey AN, Kaiser ST, Leonard CJ, Luck SJ, Gold JM (2012b) Visuospatial attention in schizophrenia: deficits in broad monitoring. J Abnorm Psychol 121:119–128

    Article  PubMed  Google Scholar 

  • Hahn B, Harvey AN, Concheiro-Guisan M, Huestis MA, Holcomb HH, Gold JM (2013) A test of the cognitive self-medication hypothesis of tobacco smoking in schizophrenia. Biol Psychiatry 74:436–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn B, Harvey AN, Gold JM, Fischer BA, Keller WR, Ross TJ, Stein EA (2016) Hyperdeactivation of the default mode network in people with schizophrenia when focusing attention in space. Schizophr Bull 42:1158–1166

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    CAS  PubMed  Google Scholar 

  • Holtze M, Saetre P, Engberg G, Schwieler L, Werge T, Andreassen OA, Hall H, Terenius L, Agartz I, Jonsson EG, Schalling M, Erhardt S (2012) Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls. J Psychiatry Neurosci 37:53–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Iaccarino HF, Suckow RF, Xie S, Bucci DJ (2013) The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: implications for schizophrenia. Schizophr Res 150:392–397

    Article  PubMed  Google Scholar 

  • Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Kiank C, Zeden JP, Drude S, Domanska G, Fusch G, Otten W, Schuett C (2010) Psychological stress-induced, IDO1-dependent tryptophan catabolism: implications on immunosuppression in mice and humans. PLoS One 5:e11825

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreither J, Lopez-Calderon J, Leonard CJ, Robinson BM, Ruffle A, Hahn B, Gold JM, Luck SJ (2017) Electrophysiological evidence for hyperfocusing of spatial attention in schizophrenia. J Neurosci 37:3813–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard CJ, Kaiser ST, Robinson BM, Kappenman ES, Hahn B, Gold JM, Luck SJ (2013) Toward the neural mechanisms of reduced working memory capacity in schizophrenia. Cereb Cortex 23:1582–1592

    Article  PubMed  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    Article  CAS  PubMed  Google Scholar 

  • Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S (2012) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 38:426–432

    Article  PubMed  Google Scholar 

  • Luck SJ, McClenon C, Beck VM, Hollingworth A, Leonard CJ, Hahn B, Robinson BM, Gold JM (2014) Hyperfocusing in schizophrenia: evidence from interactions between working memory and eye movements. J Abnorm Psychol 123:783–795

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald JF, Jackson MF, Beazely MA (2006) Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 18:71–84

    Article  CAS  PubMed  Google Scholar 

  • Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S (2004) Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 15:618–629

    Article  CAS  PubMed  Google Scholar 

  • Miller CL, Llenos IC, Dulay JR, Weis S (2006) Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res 1073-1074:25–37

    Article  CAS  PubMed  Google Scholar 

  • Mirza NR, Stolerman IP (1998) Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology 138:266–274

    Article  CAS  PubMed  Google Scholar 

  • Muller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10:131–148

    Article  CAS  PubMed  Google Scholar 

  • Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindstrom LH, Nordin C, Karanti A, Persson P, Erhardt S (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80:315–322

    Article  CAS  PubMed  Google Scholar 

  • Nilsson LK, Linderholm KR, Erhardt S (2006) Subchronic treatment with kynurenine and probenecid: effects on prepulse inhibition and firing of midbrain dopamine neurons. J Neural Transm (Vienna) 113:557–571

    Article  CAS  Google Scholar 

  • Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72:29–39

    Article  PubMed  Google Scholar 

  • Paine TA, Carlezon WA Jr (2009) Effects of antipsychotic drugs on MK-801-induced attentional and motivational deficits in rats. Neuropharmacology 56:788–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pershing ML, Bortz DM, Pocivavsek A, Fredericks PJ, Jorgensen CV, Vunck SA, Leuner B, Schwarcz R, Bruno JP (2015) Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: implications for schizophrenia. Neuropharmacology 90:33–41

    Article  CAS  PubMed  Google Scholar 

  • Pershing ML, Phenis D, Valentini V, Pocivavsek A, Lindquist DH, Schwarcz R, Bruno JP (2016) Prenatal kynurenine exposure in rats: age-dependent changes in NMDA receptor expression and conditioned fear responding. Psychopharmacology 233:3725–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pocivavsek A, HQ W, Elmer GI, Bruno JP, Schwarcz R (2012) Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur J Neurosci 35:1605–1612

    Article  PubMed  PubMed Central  Google Scholar 

  • Pocivavsek A, Thomas MA, Elmer GI, Bruno JP, Schwarcz R (2014) Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology 231:2799–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathyasaikumar KV, Stachowski EK, Wonodi I, Roberts RC, Rassoulpour A, McMahon RP, Schwarcz R (2011) Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull 37:1147–1156

    Article  PubMed  Google Scholar 

  • Sawaki R, Kreither J, Leonard CJ, Kaiser ST, Hahn B, Gold JM, Luck SJ (2017) Hyperfocusing of attention on goal-related information in schizophrenia: evidence from electrophysiology. J Abnorm Psychol 126:106–116

    Article  PubMed  Google Scholar 

  • Schwarcz R, Rassoulpour A, HQ W, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz R, Bruno JP, Muchowski PJ, HQ W (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepard PD, Joy B, Clerkin L, Schwarcz R (2003) Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology 28:1454–1462

    Article  CAS  PubMed  Google Scholar 

  • Trecartin KV, Bucci DJ (2011) Administration of kynurenine during adolescence, but not during adulthood, impairs social behavior in rats. Schizophr Res 133:156–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Widner B, Ledochowski M, Fuchs D (2000) Interferon-gamma-induced tryptophan degradation: neuropsychiatric and immunological consequences. Curr Drug Metab 1:193–204

    Article  CAS  PubMed  Google Scholar 

  • Wonodi I, Stine OC, Sathyasaikumar KV, Roberts RC, Mitchell BD, Hong LE, Kajii Y, Thaker GK, Schwarcz R (2011) Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes. Arch Gen Psychiatry 68:665–674

    Article  CAS  PubMed  Google Scholar 

  • Young JW, Geyer MA (2013) Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol 86:1122–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Silvio O. Conte Center grant (P50 MH103222) and R01 DA035813 (B. Hahn). A. Pocivavsek is a trainee on K12 HD43489-14. We thank Ashleigh Wells and Taylor Radden for contributing to data collection.

Funding

This work was supported by a Silvio O. Conte Center grant (P50 MH103222) and R01 DA035813 (B. Hahn). A. Pocivavsek is a trainee on K12 HD43489-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Hahn.

Ethics declarations

Conflict of interest

Britta Hahn, Carolyn Reneski, Ana Pocivavsek, and Robert Schwarcz declare that they have no conflict of interest.

Human and animal rights and informed consent

The treatment of animals followed the “Principles of Laboratory Animal Care” (NIH publication No. 86-23, 1996) and was approved by the Institutional Animal Care and Use Committee of the University of Maryland School of Medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, B., Reneski, C.H., Pocivavsek, A. et al. Prenatal kynurenine treatment in rats causes schizophrenia-like broad monitoring deficits in adulthood. Psychopharmacology 235, 651–661 (2018). https://doi.org/10.1007/s00213-017-4780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4780-9

Keywords

Navigation