Skip to main content
Log in

α2-containing GABA(A) receptors: a requirement for midazolam-escalated aggression and social approach in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Benzodiazepines (BZDs) are prescribed to reduce anxiety, agitation, and muscle spasms and for their sedative-hypnotic and anticonvulsant effects. Under specific conditions, BZDs escalate aggression in some individuals. Specific effects of BZDs have been linked to the α-subunit subtype composition of GABAA receptors.

Objectives

Point-mutated mice rendered selectively insensitive to BZDs at α1-, α2-, or α3-containing GABAA receptors were used to determine which α-subunit subtypes are necessary for BZDs to escalate aggression and social approach and to reduce fear-motivated behavior.

Methods

During resident-intruder confrontations, male wild-type (WT) and point-mutated α1(H101R), α2(H101R), and α3(H126R) mice were treated with midazolam (0–1.7 mg/kg, i.p.) and evaluated for aggression in an unfamiliar environment. Separate midazolam-treated WT and point-mutated mice were assessed for social approach toward a female or investigated in a 6-day fear-potentiated startle procedure.

Results

Moderate doses of midazolam (0.3–0.56 mg/kg, i.p.) escalated aggression in WT and α3(H126R) mutants and increased social approach in WT and α1(H101R) mice. The highest dose of midazolam (1.0 mg/kg) reduced fear-potentiated startle responding. All mice were sensitive to the sedative effect of midazolam (1.7 mg/kg) except α1(H101R) mutants.

Conclusions

Midazolam requires BZD-sensitive α1- and α2-containing GABAA receptors in order to escalate aggression and α2- and α3-containing receptors to reduce social anxiety-like behavior. GABAA receptors containing the α1-subunit are crucial for BZD-induced sedation, while α2-containing GABAA receptors may be a shared site of action for the pro-aggressive and anxiolytic effects of BZDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ben-Porath DD, Taylor SP (2002) The effects of diazepam (Valium) and aggressive disposition on human aggression—an experimental investigation. Addict Behav 27:167–177

    Article  PubMed  Google Scholar 

  • Benson JA, Low K, Keist R, Mohler H, Rudolph U (1998) Pharmacology of recombinant gamma-aminobutyric acid A receptors rendered diazepam-insensitive by point-mutated alpha-subunits. Febs Lett 431:400–404

    Article  CAS  PubMed  Google Scholar 

  • Berman ME, Jones GD, McCloskey MS (2005) The effects of diazepam on human self-aggressive behavior. Psychopharmacology 178:100–106

    Article  CAS  PubMed  Google Scholar 

  • Bjork JM, Moeller FG, Kramer GL, Kram M, Suris A, Rush AJ, Petty F (2001) Plasma GABA levels correlate with aggressiveness in relatives of patients with unipolar depressive disorder. Psychiat Res 101:131–136

    Article  CAS  Google Scholar 

  • Brown JS, Kalish HI, Farber IE (1951) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41:317–328

    Article  CAS  PubMed  Google Scholar 

  • Campo-Soria C, Chang YC, Weiss DS (2006) Mechanism of action of benzodiazepines on GABA(A) receptors. Brit J Pharmacol 148:984–990

    Article  CAS  Google Scholar 

  • Clement J, Simler S, Ciesielski L, Mandel P, Cabib S, Puglisi-Allegra S (1987) Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive-behavior in inbred strains of mice. Pharmacol Biochem Behav 26:83–88

    Article  CAS  PubMed  Google Scholar 

  • Covault J, Gelernter J, Hesselbrock V, Nellissery M, Kranzler HR (2004) Allelic and haplotypic association of GABRA2 with alcohol dependence. Am J Med Genet B 129B:104–109

    Article  Google Scholar 

  • Covault J, Gelernter J, Jensen K, Anton R, Kranzler HR (2008) Markers in the 5′-region of GABRG1 associate to alcohol dependence and are in linkage disequilibrium with markers in the adjacent GABRA2 gene. Neuropsychopharmacol 33:837–848

    Article  CAS  Google Scholar 

  • Crestani F, Martin JR, Mohler H, Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Brit J Pharmacol 131:1251–1254

    Article  CAS  Google Scholar 

  • Crestani F, Low K, Keist R, Mandelli MJ, Mohler H, Rudolph U (2001) Molecular targets for the myorelaxant action of diazepam. Mol Pharmacol 59:442–445

    CAS  PubMed  Google Scholar 

  • Cruz DA, Lovallo EM, Stockton S, Rasband M, Lewis DA (2009) Postnatal development of synaptic structure proteins in pyramidal neuron axon initial segments in monkey prefrontal cortex. J Comp Neurol 514:353–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dick DM, Bierut L, Hinrichs A, Fox L, Bucholz KK, Kramer J, Kuperman S, Hesselbrock V, Schuckit M, Almasy L, Tischfield J, Porjesz B, Begleiter H, Nurnberger J, Xuei XL, Edenberg HJ, Foroud T (2006a) The role of GABRA2 in risk for conduct disorder and alcohol and drug dependence across developmental stages. Behav Genet 36:577–590

    Article  PubMed  Google Scholar 

  • Dick DM, Jones K, Saccone N, Hinrichs A, Wang JC, Goate A, Bierut L, Almasy L, Schuckit M, Hesselbrock V, Tischfield J, Foroud T, Edenberg H, Porjesz B, Begleiter H (2006b) Endophenotypes successfully lead to gene identification: results from the collaborative study on the genetics of alcoholism. Behav Genet 36:112–126

    Article  PubMed  Google Scholar 

  • Dick DM, Latendresse SJ, Lansford JE, Budde JP, Goate A, Dodge KA, Pettit GS, Bates JE (2009) Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Arch Gen Psychiat 66:649–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dimascio A (1973) Effects of benzodiazepines on aggression—reduced or increased. Psychopharmacologia 30:95–102

    Article  CAS  PubMed  Google Scholar 

  • Dixon CI, Rosahl TW, Stephens DN (2008) Targeted deletion of the GABRA2 gene encoding alpha-2-subunits of GABA(A) receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates. Pharmacol Biochem Behav 90:1–8

    Article  CAS  PubMed  Google Scholar 

  • Dixon CI, Morris HV, Breen G, Desrivieres S, Jugurnauth S, Steiner RC, Vallada H, Guindalini C, Laranjeira R, Messas G, Rosahl TW, Atack JR, Peden DR, Belelli D, Lambert JJ, King SL, Schumann G, Stephens DN (2010) Cocaine effects on mouse incentive-learning and human addiction are linked to alpha 2 subunit-containing GABA(A) receptors. Proc Natl Acad Sci U S A 107:2289–2294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drgon T, D’Addario C, Uhl GR (2006) Linkage disequilibrium, haplotype and association studies of a chromosome 4 GABA receptor gene cluster: candidate gene variants for addictions. Am J Med Genet B 141B:854–860

    Article  CAS  Google Scholar 

  • Edenberg HJ, Dick DM, Xuei XL, Tian HJ, Almasy L, Bauer LO, Crowe RR, Goate A, Hesselbrock V, Jones K, Kwon J, Li TK, Nurnberger JI, O’Connor SJ, Reich T, Rice J, Schuckit MA, Porjesz B, Foroud T, Begleiter H (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74:705–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ehrlich DE, Ryan SJ, Hazra R, Guo JD, Rainnie DG (2013) Postnatal maturation of GABAergic transmission in the rat basolateral amygdala. J Neurophysiol 110:926–941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engin E, Bakhurin KI, Smith KS, Hines RM, Reynolds LM, Tang WN, Sprengel R, Moss SJ, Rudolph U (2014) Neural basis of benzodiazepine reward: requirement for alpha 2 containing GABA(A) receptors in the nucleus accumbens. Neuropsychopharmacol 39:1805–1815

    Article  CAS  Google Scholar 

  • Enoch MA, Schwartz L, Albaugh B, Virkkunen M, Goldman D (2006) Dimensional anxiety mediates linkage of GABRA2 haplotypes with alcoholism. Am J Med Genet B 141B:599–607

    Article  Google Scholar 

  • Feja M, Koch M (2014) Ventral medial prefrontal cortex inactivation impairs impulse control but does not affect delay-discounting in rats. Behav Brain Res 264:230–239

    Article  PubMed  Google Scholar 

  • Ferrari PF, Parmigiani S, Rodgers RJ, Palanza P (1997) Differential effects of chlordiazepoxide on aggressive behavior in male mice: the influence of social factors. Psychopharmacology 134:258–265

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 146:391–399

    Article  CAS  PubMed  Google Scholar 

  • Fox KA, Tuckosh JR, Wilcox AH (1970) Increased aggression among grouped male mice fed chlordiazepoxide. Eur J Pharmacol 11:119–121

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56:33–42

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Johnson DK, Mohler H, Rudolph U (1998a) Independent assembly and subcellular targeting of GABA(A)-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci Lett 249:99–102

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Weinmann O, Wenzel A, Benke D (1998b) Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210

    Article  CAS  PubMed  Google Scholar 

  • Gardos G, Dimascio A, Salzman C, Shader RI (1968) Differential actions of chlordiazepoxide and oxazepam on hostility. Arch Gen Psychiat 18:757–760

    Article  CAS  PubMed  Google Scholar 

  • Gielen MC, Lumb MJ, Smart TG (2012) Benzodiazepines modulate GABA(A) receptors by regulating the preactivation step after GABA binding. J Neurosci 32:5707–5715

    Article  CAS  PubMed  Google Scholar 

  • Gourley SL, DeBold JF, Yin WY, Cook J, Miczek KA (2005) Benzodiazepines and heightened aggressive behavior in rats: reduction by GABA(A)/alpha(1) receptor antagonists. Psychopharmacology 178:232–240

    Article  CAS  PubMed  Google Scholar 

  • Halasz J, Liposits Z, Meelis W, Kruk MR, Haller J (2002) Hypothalamic attack area-mediated activation of the forebrain in aggression. Neuroreport 13:1267–1270

    Article  PubMed  Google Scholar 

  • Haller J, Abraham I, Zelena D, Juhasz G, Makara GB, Kruk MR (1998) Aggressive experience affects the sensitivity of neurons towards pharmacological treatment in the hypothalamic attack area. Behav Pharmacol 9:469–475

    Article  CAS  PubMed  Google Scholar 

  • Heise GA, Boff E (1961) Taming action of chlordiazepoxide. Fed Proc 20:393

    Google Scholar 

  • Heuschele W (1961) Chlordiazepoxide for calming zoo animals. J Am Vet Med Assoc 139:996–998

    CAS  PubMed  Google Scholar 

  • Kemppainen S, Pitkanen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D-28k immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 426:441–467

    Article  CAS  PubMed  Google Scholar 

  • Koester C, Rudolph U, Haenggi T, Papilloud A, Fritschy JM, Crestani F (2013) Dissecting the role of diazepam-sensitive gamma-aminobutyric acid type A receptors in defensive behavioral reactivity to mild threat. Pharmacol Biochem Behav 103:541–549

    Article  CAS  PubMed  Google Scholar 

  • Lappalainen J, Krupitsky E, Remizov M, Pchelina S, Taraskina A, Zvartau E, Somberg LK, Covault J, Kranzler HR, Krystal JH, Gelernter J (2005) Association between alcoholism and gamma-amino butyric acid alpha 2 receptor subtype in a Russian population. Alcohol Clin Exp Res 29:493–498

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35:57–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li DW, Sulovari A, Cheng C, Zhao HY, Kranzler HR, Gelernter J (2014) Association of gamma-aminobutyric acid a receptor alpha 2 gene (GABRA2) with alcohol use disorder. Neuropsychopharmacology 39:907–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loup F, Weinmann O, Yonekawa Y, Aguzzi A, Wieser HG, Fritschy JM (1998) A highly sensitive immunofluorescence procedure for analyzing the subcellular distribution of GABA(A) receptor subunits in the human brain. J Histochem Cytochem 46:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Low K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Mohler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RL, Olsen RW (1994) GABA(A) receptor channels. Annu Rev Neurosci 17:569–602

    Article  CAS  PubMed  Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines ave mediated by the GABA(A) receptor alpha(1) subtype. Nat Neurosci 3:587–592

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA (1974) Intraspecies aggression in rats—effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia 39:275–301

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, O'Donnell JM (1980) Alcohol and chlordiazepoxide increase suppressed aggression in mice. Psychopharmacology 69:39–44

  • Morris HV, Dawson GR, Reynolds DS, Atack JR, Stephens DN (2006) Both alpha 2 and alpha 3 GABA(A) receptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. Eur J Neurosci 23:2495–2504

    Article  CAS  PubMed  Google Scholar 

  • Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314

    Article  CAS  PubMed  Google Scholar 

  • Nusser Z, Sieghart W, Benke D, Fritschy JM, Somogyi P (1996) Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc Natl Acad Sci U S A 93:11939–11944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ralvenius WT, Benke D, Acuna MA, Rudolph U, Zeilhofer HU (2015) Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype. Nat Commun. doi:10.1038/ncomms7803

    PubMed  Google Scholar 

  • Reynolds LM, Engin E, Tantillo G, Lau HM, Muschamp JW, Carlezon WA, Rudolph U (2012) Differential roles of GABA(A) receptor subtypes in benzodiazepine-induced enhancement of brain-stimulation reward. Neuropsychopharmacology 37:2531–2540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABA(A) receptor subtypes. Nat Rev Drug Discov 10:685–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brunig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Mohler H (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401:796–800

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Meloni EG, Myers KM, Van’t Veer A, Carlezon WA, Rudolph U (2011) Reduction of fear-potentiated startle by benzodiazepines in C57BL/6J mice. Psychopharmacology 213:697–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith KS, Engin E, Meloni EG, Rudolph U (2012) Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABA(A) receptor subtypes in mice. Neuropharmacology 63:250–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soyka M, Preuss UW, Hesselbrock V, Zill P, Koller G, Bondy B (2008) GABA-A2 receptor subunit gene (GABRA2) polymorphisms and risk for alcohol dependence. J Psychiat Res 42:184–191

    Article  CAS  PubMed  Google Scholar 

  • Toth M, Fuzesi T, Halasz J, Tulogdi A, Haller J (2010) Neural inputs of the hypothalamic “aggression area” in the rat. Behav Brain Res 215:7–20

    Article  PubMed  Google Scholar 

  • Uhart M, Weerts EM, McCaul ME, Guo XQ, Yan XF, Kranzler HR, Li N, Wand GS (2013) GABRA2 markers moderate the subjective effects of alcohol. Addict Biol 18:357–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace PS, Taylor SP (2009) Reduction of appeasement-related affect as a concomitant of diazepam-induced aggression: evidence for a link between aggression and the expression of self-conscious emotions. Aggress Behav 35:203–212

    Article  PubMed  Google Scholar 

  • Weerts EM, Miczek KA (1996) Primate vocalizations during social separation and aggression: effects of alcohol and benzodiazepines. Psychopharmacology 127:255–264

    Article  CAS  PubMed  Google Scholar 

  • Weisman AM, Berman ME, Taylor SP (1998) Effects of clorazepate, diazepam, and oxazepam on a laboratory measurement of aggression in men. Int Clin Psychopharmacol 13:183–188

    Article  CAS  PubMed  Google Scholar 

  • Wieland HA, Luddens H, Seeburg PH (1992) A single histidine in GABA-A receptors is essential for benzodiazepine agonist binding. J Biol Chem 267:1426–1429

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank J. Thomas Sopko, Keisha Dodman, Darrel Gachette, Georgia Gunner, Nishani Hewage, Polly Huynh, Aida Vargas De Jesus, and Tiffany Wang for their excellent contributions.

The project described was supported by Award Numbers R01AA013983 to KAM from the National Institute on Alcohol Abuse and Alcoholism and R01MH080006 to UR from the National Institute of Mental Health. The content is the sole responsibility of the authors and does not necessarily represent the official views of the National Institute on Alcohol Abuse and Alcoholism, the National Institute of Mental Health, or the National Institutes of Health.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily L. Newman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, E.L., Smith, K.S., Takahashi, A. et al. α2-containing GABA(A) receptors: a requirement for midazolam-escalated aggression and social approach in mice. Psychopharmacology 232, 4359–4369 (2015). https://doi.org/10.1007/s00213-015-4069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4069-9

Keywords

Navigation