Skip to main content
Log in

Ventral tegmental area GABA neurons and opiate motivation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine's motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization.

Objectives

The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation.

Results

Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine's motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons.

Conclusions

Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison DW, Ohran AJ, Stobbs SH, Mameli M, Valenzuela CF, Sudweeks SN, Ray AP, Henriksen SJ, Steffensen SC (2006) Connexin-36 gap junctions mediate electrical coupling between ventral tegmental area GABA neurons. Synapse 60:20–31

    Article  CAS  PubMed  Google Scholar 

  • Allison DW, Wilcox RS, Ellefsen KL, Askew CE, Hansen DM, Wilcox JD, Sandoval SS, Eggett DL, Yanagawa Y, Steffensen SC (2011) Mefloquine effects on ventral tegmental area dopamine and GABA neuron inhibition: a physiologic role for connexin-36 GAP junctions. Synapse 65:804–813

    Article  CAS  PubMed  Google Scholar 

  • Auger AP, Perrot-Sinal TS, McCarthy MM (2001) Excitatory versus inhibitory GABA as a divergence point in steroid-mediated sexual differentiation of the brain. Proc Natl Acad Sci U S A 98:8059–8064

    Article  CAS  PubMed  Google Scholar 

  • Balcita-Pedicino JJ, Omelchenko N, Bell R, Sesack SR (2011) The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J Comp Neurol 519:1143–1164

    Article  CAS  PubMed  Google Scholar 

  • Bechara A, van der Kooy D (1992) A single brain stem substrate mediates the motivational effects of both opiates and food in nondeprived rats but not in deprived rats. Behav Neurosci 106:351–363

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  CAS  PubMed  Google Scholar 

  • Berton O, McClung CA, DiLeone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    Article  CAS  PubMed  Google Scholar 

  • Bonci A, Williams JT (1997) Increased probability of GABA release during withdrawal from morphine. J Neurosci 17:796–803

    CAS  PubMed  Google Scholar 

  • Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519

    Article  CAS  PubMed  Google Scholar 

  • Churchill L, Dilts R, Kalivas P (1992) Autoradiographic localization of gamma-aminobutyric acid-A receptors within the ventral tegmental area. Neurochem Res 17:101–106

    Article  CAS  PubMed  Google Scholar 

  • Coull JAM, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CL, Malott DH, Dickinson SD, Risinger FO (1992) Haloperidol does not alter expression of ethanol-induced conditioned place preference. Behav Brain Res 50:1–5

    Article  CAS  PubMed  Google Scholar 

  • Dobi A, Margolis EB, Wang HL, Harvey BK, Morales M (2010) Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. J Neurosci 30:218–229

    Article  CAS  PubMed  Google Scholar 

  • Fritschy J-M, Paysan J, Enna A, Mohler H (1994) Switch in the expression of rat GABA-A-receptor subtypes during postnatal development: an immunohistochemical study. J Neurosci 14:5302–5324

    CAS  PubMed  Google Scholar 

  • Garzon M, Pickel VM (2001) Plasmalemmal mu-opioid receptor distribution mainly in nondopaminergic neurons in the rat ventral tegmental area. Synapse 41:311–328

    Article  CAS  PubMed  Google Scholar 

  • Goeders NE, Lane JD, Smith JE (1984) Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol Biochem Behav 20:451–455

    Article  CAS  PubMed  Google Scholar 

  • Heinmiller A, Ting-A-Kee R, Vargas-Perez H, Yeh A, van der Kooy D (2009) Tegmental pedunculopontine glutamate and GABA-B synapses mediate morphine reward. Behav Neurosci 123:145–155

    Article  CAS  PubMed  Google Scholar 

  • Hnasko TS, Sotak BN, Palmiter RD (2005) Morphine reward in dopamine-deficient mice. Nature 438:854–857

    Article  CAS  PubMed  Google Scholar 

  • Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524

    Article  CAS  PubMed  Google Scholar 

  • Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, Georges F (2011) Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci U S A 108:16446–16450

    Article  CAS  PubMed  Google Scholar 

  • Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61:786–800

    Article  CAS  PubMed  Google Scholar 

  • Johnson SW, North RA (1992a) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    CAS  PubMed  Google Scholar 

  • Johnson SW, North RA (1992b) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468

    CAS  PubMed  Google Scholar 

  • Kaila K (1994) Ionic basis of GABA-A receptor channel function in the nervous system. Prog Neurobiol 42:489–537

    Article  CAS  PubMed  Google Scholar 

  • Kaila K, Voipio J, Paalasmaa P, Pasternack M, Deisz RA (1993) The role of bicarbonate in GABA-A receptor-mediated IPSPs of rat neocortical neurones. J Physiol 464:273–289

    CAS  PubMed  Google Scholar 

  • Kalivas PW (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Rev 18:75–113

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    Article  CAS  PubMed  Google Scholar 

  • Laviolette SR, van der Kooy D (2003) Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 8:50–59

    Article  CAS  PubMed  Google Scholar 

  • Laviolette SR, van der Kooy D (2004) GABAA receptors signal bidirectional reward transmission from the ventral tegmental area to the tegmental pedunculopontine nucleus as a function of opiate state. Eur J Neurosci 20:2179–2187

    Article  PubMed  Google Scholar 

  • Laviolette SR, Gallegos RA, Henriksen SJ, van der Kooy D (2004) Opiate state controls bi-directional reward signaling via GABA-A receptors in the ventral tegmental area. Nat Neurosci 7:160–169

    Article  CAS  PubMed  Google Scholar 

  • Lecca S, Melis M, Luchicchi A, Ennas MG, Castelli MP, Muntoni AL, Pistis M (2011) Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology 36:589–602

    Article  CAS  PubMed  Google Scholar 

  • Lee HH, Deeb TZ, Walker JA, Davies PA, Moss SJ (2011) NMDA receptor activity downregulates KCC2 resulting in depolarizing GABA(A) receptor-mediated currents. Nat Neurosci 14:736–743

    Article  CAS  PubMed  Google Scholar 

  • Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907–924

    Article  CAS  PubMed  Google Scholar 

  • Martina M, Royer S, Pare D (2001) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol 86:2887–2895

    CAS  PubMed  Google Scholar 

  • Mucha RF, van der Kooy D, O'Shaughnessy M, Bucenieks P (1982) Drug reinforcement studied by the use of place conditioning in rat. Brain Res 243:91–105

    Article  CAS  PubMed  Google Scholar 

  • Nader K, van der Kooy D (1994) The motivation produced by morphine and food is isomorphic: approaches to specific motivational stimuli are learned. Psychobiology 22:68–76

    CAS  Google Scholar 

  • Niehaus JL, Murali M, Kauer JA (2010) Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. Eur J Neurosci 32:108–117

    Article  PubMed  Google Scholar 

  • Okada H, Matsushita N, Kobayashi K (2004) Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons. J Neurochem 89:7–14

    Google Scholar 

  • Olds ME (1982) Reinforcing effects of morphine in the nucleus accumbens. Brain Res 237:429–440

    Article  CAS  PubMed  Google Scholar 

  • Olmstead MC, Franklin KB (1993) Effects of pedunculopontine tegmental nucleus lesions on morphine-induced conditioned place preference and analgesia in the formalin test. Neuroscience 57:411–418

    Article  CAS  PubMed  Google Scholar 

  • Olmstead MC, Munn EM, Franklin KB, Wise RA (1998) Effects of pedunculopontine tegmental nucleus lesions on responding for intravenous heroin under different schedules of reinforcement. J Neurosci 18:5035–5044

    CAS  PubMed  Google Scholar 

  • Omelchenko N, Sesack SR (2005) Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. J Comp Neurol 483:217–235

    Article  PubMed  Google Scholar 

  • Omelchenko N, Sesack SR (2009) Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells. Synapse 63:895–906

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, Toronto

    Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berlin) 84:167–173

    Article  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  CAS  PubMed  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion. J Cell Biol 159:747–752

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci 31:18198–18210

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer C, Berresheim U, Pirker S, Wieselthaler A, Fuchs K, Sieghart W, Sperk G (2001) Distribution of the major gamma-aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol 433:526–549

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Pickel VM (1992) Synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160

    Article  CAS  PubMed  Google Scholar 

  • Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABA-A receptors. Science 269(5226):977–981

    Article  CAS  PubMed  Google Scholar 

  • Steffensen SC, Stobbs SH, Colago EE, Lee RS, Koob GF, Gallegos RA, Henriksen SJ (2006) Contingent and non-contingent effects of heroin on mu-opioid receptor-containing ventral tegmental area GABA neurons. Exp Neurol 202:139–151

    Article  CAS  PubMed  Google Scholar 

  • Steffensen SC, Bradley KD, Hansen DM, Wilcox JD, Wilcox RS, Allison DW, Merrill CB, Edwards JG (2011) The role of connexin-36 gap junctions in alcohol intoxication and consumption. Synapse 65:695–707

    Article  CAS  PubMed  Google Scholar 

  • Sun M-K, Alkon DL (2001) Pharmacological enhancement of synaptic efficacy, spatial learning, and memory through carbonic anhydrase activation in rats. J Pharmacol Exp Ther 297:961–967

    CAS  PubMed  Google Scholar 

  • Sun L, Yu Z, Wang W, Liu X (2012) Both NKCC1 and anion exchangers contribute to Cl(−) accumulation in postnatal forebrain neuronal progenitors. Eur J Neurosci 35:661–672

    Article  PubMed  Google Scholar 

  • Svingos AL, Garzon M, Colago EEO, Pickel VM (2001) mu-opioid receptors in the ventral tegmental area are targeted to presynaptically and directly modulate mesocortical projection neurons. Synapse 41:221–229

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study. Brain Res Bull 9:321–353

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79

    Article  CAS  PubMed  Google Scholar 

  • Tan KR, Brown M, Labouebe G, Yvon C, Creton C, Fritschy JM, Rudolph U, Luscher C (2010) Neural bases for addictive properties of benzodiazepines. Nature 463:769–774

    Article  CAS  PubMed  Google Scholar 

  • Thierry AM, Deniau JM, Herve D, Chevalier G (1980) Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat. Brain Res 201:210–214

    Article  CAS  PubMed  Google Scholar 

  • Thompson SM, Deisz RA, Prince DA (1988) Outward chloride/cation co-transport in mammalian cortical neurons. Neurosci Lett 89:49–54

    Article  CAS  PubMed  Google Scholar 

  • Van Bockstaele EJ, Pickel VM (1995) GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res 682:215–221

    Article  PubMed  Google Scholar 

  • Vargas-Perez H, Ting-A-Kee R, Walton CH, Hansen DM, Razavi R, Clarke L, Bufalino MR, Allison DW, Steffensen SC, van der Kooy D (2009) Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naive rats. Science 324:1732–1734

    Article  CAS  PubMed  Google Scholar 

  • Viitanen T, Ruusuvuori E, Kaila K, Voipio J (2010) The K+–Cl− cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol 588:1527–1540

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Castel M, Gainer H, Yarom Y (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387:598–603

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Watanabe M, Moorhouse AJ, Kanematsu T, Horibe S, Matsukawa N, Asai K, Ojika K, Hirata M, Nabekura J (2007) Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation. J Neurosci 27:1642–1650

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 5:39–87

    Article  Google Scholar 

  • Wise RA (1989) Opiate reward: sites and substrates. Neurosci Biobehav Rev 13:129–133

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Driscoll JR, Wilbrecht L, Margolis EB, Fields HL, Hjelmstad GO (2011) Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci 31:7811–7816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Canadian Institutes of Health Research (CIHR), a Natural Sciences and Engineering Research Council of Canada (NSERC) graduate training award, and by a NIH grant AA020919 to SCS.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Ting-A-Kee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 676 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting-A-Kee, R., Vargas-Perez, H., Mabey, J.K. et al. Ventral tegmental area GABA neurons and opiate motivation. Psychopharmacology 227, 697–709 (2013). https://doi.org/10.1007/s00213-013-3002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3002-3

Keywords

Navigation