Skip to main content

Advertisement

Log in

An allosteric enhancer of M4 muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The mesostriatal dopamine system plays a key role in mediating the reinforcing effects of psychostimulant drugs like cocaine. The muscarinic M4 acetylcholine receptor subtype is centrally involved in the regulation of dopamine release in striatal areas. Consequently, striatal M4 receptors could be a novel target for modulating psychostimulant effects of cocaine.

Objectives

For the first time, we here addressed this issue by investigating the effects of a novel selective positive allosteric modulator of M4 receptors, VU0152100, on cocaine-induced behavioral and neurochemical effects in mice.

Methods

To investigate the effect of VU0152100 on the acute reinforcing effects of cocaine, we use an acute cocaine self-administration model. We used in vivo microdialysis to investigate whether the effects of VU0152100 in the behavioral studies were mediated via effects on dopaminergic neurotransmission. In addition, the effect of VU0152100 on cocaine-induced hyperactivity and rotarod performance was evaluated.

Results

We found that VU0152100 caused a prominent reduction in cocaine self-administration, cocaine-induced hyperlocomotion, and cocaine-induced striatal dopamine increase, without affecting motor performance. Consistent with these effects of VU0152100 being mediated via M4 receptors, its inhibitory effects on cocaine-induced increases in striatal dopamine were abolished in M4 receptor knockout mice. Furthermore, selective deletion of the M4 receptor gene in dopamine D1 receptor-expressing neurons resulted in a partial reduction of the VU0152100 effect, indicating that VU0152100 partly regulates dopaminergic neurotransmission via M4 receptors co-localized with D1 receptors.

Conclusions

These results show that positive allosteric modulators of the M4 receptor deserve attention as agents in the future treatment of cocaine abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen MB, Fink-Jensen A, Peacock L, Gerlach J, Bymaster F, Lundbæk JA, Werge T (2003) The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in cebus apella monkeys. Neuropsychopharmacology 28:1168–1175

    PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600

    PubMed  CAS  Google Scholar 

  • Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB, Shirey JK, Conn PJ (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327:941–953

    Article  PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJ, Bymaster FP, Felder CC (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA 105:10978–10983

    Article  PubMed  CAS  Google Scholar 

  • Dencker D, Wàrtwein G, Weikop P, Jeon J, Thomsen M, Sager TN, MØrk A, Woldbye DPD, Wess J, Fink-Jensen A (2011) Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J Neurosci 31:5905–5908

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Morelli M, Consolo S (1994) Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 17:228–233

    Article  PubMed  Google Scholar 

  • Felder CC, Porter AC, Skillman TL, Zhang L, Bymaster FP, Nathanson NM, Hamilton SE, Gomeza J, Wess J, McKinzie DL (2001) Elucidating the role of muscarinic receptors in psychosis. Life Sci 68:2605–2613

    Article  PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Kristensen P, Shannon HE, Calligaro DO, DeLapp NW, Whitesitt C, Ward JS, Thomsen C, Rasmussen T, Sheardown MJ, Jeppesem L, Sauerberg P, Bymaster FP (1998) Muscarinic agonists exhibit functional dopamine antagonism in unilaterally 6-OHDA lesioned rats. Neuroreport 9:3481–3486

    Article  PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Schmidt LS, Dencker D, Schülein C, Wess J, Wörtwein G, Woldbye DPD (2011) Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic receptor. Eur J Pharmacol 656:39–44

    Article  PubMed  CAS  Google Scholar 

  • Franklin KJB, Paxinos G (2007) The mouse brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng CX, Wess J (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:10483–10488

    Article  PubMed  CAS  Google Scholar 

  • Guo N, Robertson GS, Fibiger HC (1992) Scopolamine attenuates haloperidol-induced c-fos expression in the striatum. Brain Res 588:164–167

    Article  PubMed  CAS  Google Scholar 

  • Hjaeresen ML, Hageman I, Wortwein G, Plenge P, Jørgensen MB (2008) Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex. Brain Res 1217:179–184

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Puglisi-Allegra S, Casolini P, Zocchi A, Angelucci L (1989) Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: role of corticosterone. Eur J Pharmacol 165:337–338

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Demontis COMV, Gassa GL (1992) Cocaine releases limbic acetylcholine through endogenous dopamine action on D1 receptors. Eur J Pharmacol 229:265–267

    Article  PubMed  CAS  Google Scholar 

  • Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and M4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357–366

    Article  PubMed  CAS  Google Scholar 

  • Jeon J, Dencker D, Wörtwein G, Woldbye DPD, Cui Y, Davis AA, Levey AI, Schütz G, Sager TN, Mørk A, Li C, Deng C, Fink-Jensen A, Wess J (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci 30:2396–2405

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  PubMed  CAS  Google Scholar 

  • Leach K, Loiacono RE, Felder CC, McKinzie DL, Mogg A, Shaw DB, Sexton PM, Christopoulos A (2010) Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35:855–869

    Article  PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of M1–M5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    Article  PubMed  CAS  Google Scholar 

  • Onali P, Olianas MC (2002) Muscarinic M4 receptor inhibition of dopamine D1-like receptor signaling in rat nucleus accumbens. Eur J Pharmacol 448:105–111

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T, Sauerberg P, Nielsen EB, Swedberg MDB, Thomsen C, Sheardown MJ, Jeppesen L, Calligaro DO, DeLapp NW, Whitesitt C, Ward JS, Shannon HE, Bymaster FP, Fink-Jensen A (2000) Muscarinic receptor agonists decrease cocaine self-administration rates in drug-naïve mice. Eur J Pharmacol 402:241–246

    Article  PubMed  CAS  Google Scholar 

  • Robertson GS, Matsumura H, Fibiger HC (1994) Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 271:1058–1066

    PubMed  CAS  Google Scholar 

  • Schmidt LS, Thomsen M, Weikop P, Dencker D, Wess J, Woldbye DPD, Wörtwein G, Fink-Jensen A (2011) Increased self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology 216:367–378

    Article  PubMed  CAS  Google Scholar 

  • Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MD, Jeppesen L, Sheardown MJ, Sauerberg P, Fink-Jensen A (2000) Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42:249–259

    Article  PubMed  CAS  Google Scholar 

  • Sofuoglu M, Mooney M (2009) Cholinergic function in stimulant addiction: implications for medications development. CNS Drugs 23:939–952

    Article  PubMed  CAS  Google Scholar 

  • Sørensen G, Sager TN, Petersen JH, Brennum LT, Thøgersen P, Hee Bengtsen C, Thomsen M, Wörtwein G, Fink-Jensen A, Woldbye DP (2008) Aripiprazole blocks acute self-administration of cocaine and is not self-administered in mice. Psychopharmacology 199:37–46

    Article  PubMed  Google Scholar 

  • Sørensen G, Jensen M, Weikop P, Dencker D, Christiansen SH, Løland CJ, Bengtsen CH, Petersen JH, Fink-Jensen A, Wörtwein G, Woldbye DPD (2012) Neuropeptide Y Y5 receptor antagonism attenuates addiction-related effects of cocaine in mice. Psychopharmacology. doi:10.1007/s00213-012-2651-y

  • Threlfell S, Cragg SJ (2011) Dopamine signalling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci 5:1–10

    Article  Google Scholar 

  • Threlfell S, Clements MA, Khodai T, Pienaar IS, Exley R, Wess J, Cragg SJ (2010) Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 30:3398–3408

    Article  PubMed  CAS  Google Scholar 

  • Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, Felder C, Nomikos GG (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 18:1410–1412

    PubMed  CAS  Google Scholar 

  • Weikop P, Egestad B, Kehr J (2004) Application of triple-probe microdialysis for fast pharmacokinetic/pharmacodynamic evaluation of dopamimetic activity of drug candidates in the rat brain. J Neurosci Methods 140:59–65

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor messenger-RNAs in rat basal ganglia. Proc Natl Acad Sci USA 87:7050–7054

    Article  PubMed  CAS  Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:721–733

    Article  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  PubMed  CAS  Google Scholar 

  • Williams MJ, Adinoff B (2008) The role of acetylcholine in cocaine addiction. Neuropsychopharmacology 33:1779–1797

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    Article  PubMed  CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1993) Development of antisera selective for M4 and M5 muscarinic cholinergic receptors -distribution of M4 and M5 receptors in rat-brain. Mol Pharmacol 43:149–157

    PubMed  CAS  Google Scholar 

  • Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581–582

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J (2002) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 22:1709–1717

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Ivan Nielsen Foundation, Aase and Einar Danielsens Foundation, Butcher Max Wørzner and wife Inger Wørzner Foundation, A.P. Møller Foundation for the Advancement of Medical Science, and Lundbeck Foundation supported the present work. We thank Birgit H. Hansen for expert technical assistance.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Fink-Jensen.

Additional information

Ditte Dencker and Pia Weikop contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dencker, D., Weikop, P., Sørensen, G. et al. An allosteric enhancer of M4 muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine. Psychopharmacology 224, 277–287 (2012). https://doi.org/10.1007/s00213-012-2751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2751-8

Keywords

Navigation