Skip to main content

Advertisement

Log in

Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Adenosine A2A antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone.

Objective

The present studies were undertaken to investigate the potential for rate-dependent stimulant effects of both selective and nonselective adenosine antagonists.

Methods

Six drugs were tested: two nonselective adenosine antagonists (caffeine and theophylline), two adenosine A1 antagonists (DPCPX and CPT), and two adenosine A2A antagonists (istradefylline (KW6002) and MSX-3). Two schedules of reinforcement were employed; a fixed interval 240-s (FI-240 sec) schedule was used to generate low baseline rates of responding and a fixed ratio 20 (FR20) schedule generated high rates.

Results

Caffeine and theophylline produced rate-dependent effects on lever pressing, increasing responding on the FI-240 sec schedule but decreasing responding on the FR20 schedule. The A2A antagonists MSX-3 and istradefylline increased FI-240 sec lever pressing but did not suppress FR20 lever pressing in the dose range tested. In fact, there was a tendency for istradefylline to increase FR20 responding at a moderate dose. A1 antagonists failed to increase lever pressing rate, but DPCPX decreased FR20 responding at higher doses.

Conclusions

These results suggest that adenosine A2A antagonists enhance operant response rates, but A1 antagonists do not. The involvement of adenosine A2A receptors in regulating aspects of instrumental response output and behavioral activation may have implications for the treatment of effort-related psychiatric dysfunctions, such as psychomotor slowing and anergia in depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ando K (1973) Development of temporally spaced responding in relation to schedule value in rats. Jpn Psych Res 15(4):159–163

    Google Scholar 

  • Antoniou K, Papadopoulou-Daifoti Z, Hyphantis T, Papathanasiou G, Bekris E, Marselos M, Panlilio L, Müller CE, Goldberg SR, Ferré S (2005) A detailed behavioral analysis of the acute motor effects of caffeine in the rat: involvement of adenosine A1 and A2A receptors. Psychopharmacology 183(2):154–162

    Article  PubMed  CAS  Google Scholar 

  • Aubel B, Kayser V, Farré A, Hamon M, Bourgoin S (2007) Evidence for adenosine- and serotonin-mediated antihyperalgesic effects of cizolirtine in rats suffering from diabetic neuropathy. Neuropharmacology 52:487–496

    Article  PubMed  CAS  Google Scholar 

  • Betz AJ, Vontell R, Valenta J, Worden L, Sink KS, Font L, Correa M, Sager TN, Salamone JD (2009) Effects of the adenosine A 2A antagonist KW 6002 (istradefylline) on pimozide-induced oral tremor and striatal c-Fos expression: comparisons with the muscarinic antagonist tropicamide. Neuroscience 163(1):97–108

    Article  PubMed  CAS  Google Scholar 

  • Carney JM (1982) Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats. Br J Pharmacol 75(3):451–454

    PubMed  CAS  Google Scholar 

  • Carta AR, Pinna A, Cauli O, Morelli M (2002) Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittent l-dopa and A2A receptor blockade plus l-dopa in dopamine-denervated rats. Synapse 44(3):166–174

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Moratalla R, Impagnatiello F, Grandy DK, Cuellar B, Rubinstein M, Beilstein MA, Hacket E, Fink JS, Low MJ, Ongini E, Schwarzschild MA (2001) The role of the D2 dopamine receptor (D2R) in A2a adenenosine-receptor (A2aR) mediated behavioral and cellular responses as revealed by A2a and D2 receptor knockout mice. Proc Natl Acad Sci 98:1970–1975

    Article  PubMed  CAS  Google Scholar 

  • Collins LE, Galtieri DJ, Brennum LT, Sager TN, Hockemeyer J, Müller CE, Hinman JR, Chrobak JJ, Salamone JD (2010a) Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacol Biochem Behav 94:561–569

    Article  PubMed  CAS  Google Scholar 

  • Collins LE, Galtieri DJ, Collins P, Jones SK, Port RG, Paul NE, Hockemeyer J, Müller CE, Salamone JD (2010b) Interactions between adenosine and dopamine receptor antagonists with different selectivity profiles: effects on locomotor activity. Behav Brain Res 211:148–155

    Article  PubMed  CAS  Google Scholar 

  • Correa M, Wisniecki A, Betz A, Dobson DR, O’Neill MF, O’Neill MJ, Salamone JD (2004) The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 148:47–54

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Fredholm BB (1998) Caffeine—an atypical drug of dependence. Drug Alcohol Depend 51:199–206

    Article  PubMed  CAS  Google Scholar 

  • Davis TR, Kensler CJ, Dews PB (1973) Comparison of behavioral effects of nicotine, d-amphetamine, caffeine and dimethylheptyl tetrahydrocannabinol in squirrel monkeys. Psychopharmacology 32:51–65

    Article  CAS  Google Scholar 

  • DeMet EM, Chicz-DeMet A (2002) Localization of adenosine A2A-receptors in rat brain with [3H]ZM-241385. Naunyn Schmiedebergs Arch Pharmacol 366:478–481

    Article  PubMed  CAS  Google Scholar 

  • Dews PB (1955) Studies on behavior. I. Differential sensitivity to pentobarbital of pecking performance in pigeons depending on the schedule of reward. J Pharmacol Exp Ther 113:393–401

    PubMed  CAS  Google Scholar 

  • Dews PB (1958) Studies on behavior. IV. Stimulant actions of methamphetamine. J Pharmacol Exp Ther 122:137–147

    PubMed  CAS  Google Scholar 

  • El Yacoubi M, Ledent C, Ménard JF, Parmentier M, Costentin J, Vaugeois JM (2000) The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors. Br J Pharmacol 129:1465–1473

    Article  PubMed  CAS  Google Scholar 

  • Farrar AM, Pereira M, Velasco F, Hockemeyer J, Müller CE, Salamone JD (2007) Adenosine A(2A) receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology 191:579–586

    Article  PubMed  CAS  Google Scholar 

  • Farrar AM, Segovia KN, Randall PA, Nunes EJ, Collins LE, Stopper CM, Port RG, Hockemeyer J, Müller CE, Correa M, Salamone JD (2010) Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience 166:1056–1067

    Article  PubMed  CAS  Google Scholar 

  • Ferré S (1997) Adenosine–dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology 133:107–120

    Article  PubMed  Google Scholar 

  • Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  PubMed  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine–dopamine receptor–receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  PubMed  Google Scholar 

  • Ferré S, Popoli P, Giménez-Llort L, Rimondini R, Müller CE, Strömberg I, Ögren SO, Fuxe K (2001) Adenosine/dopamine interaction: implications for the treatment of Parkinson’s disease. Parkinsonism Relat Disord 7:235–241

    Article  PubMed  Google Scholar 

  • Ferré S, Ciruela F, Canals M, Marcellino D, Burgueno J, Casadó V, Hillion J, Torvinen M, Fanelli F, Benedetti Pd P, Goldberg SR, Bouvier M, Fuxe K, Agnati LF, Lluis C, Franco R, Woods A (2004) Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism Relat Disord 10:265–271

    Article  PubMed  Google Scholar 

  • Ferré S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR (2008a) Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain. Front Biosci 13:2391–2399

    Article  PubMed  Google Scholar 

  • Ferré S, Quiroz C, Woods AS, Cunha R, Popoli P, Ciruela F, Lluis C, Franco R, Azdad K, Schiffmann SN (2008b) An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharm Des 14:1468–1474

    Article  PubMed  Google Scholar 

  • Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM, Reppert SM (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 14:186–195

    Article  PubMed  CAS  Google Scholar 

  • Fry W, Kelleher RT, Cook L (1960) A mathematical index of performance on fixed-interval schedules of reinforcement. J Exp Anal Behav 3:193–199

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, Tinner-Staines B, Staines W, Rosin D, Terasmaa A, Popoli P, Leo G, Vergoni V, Lluis C, Ciruela F, Franco R, Ferré S (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61(11 Supp. 6):S19–S23

    PubMed  CAS  Google Scholar 

  • Garrett BE, Holtzman SG (1994) D1 and D2 dopamine receptor antagonists block caffeine-induced stimulation of locomotor activity in rats. Pharmacol Biochem Behav 47:89–94

    Article  PubMed  CAS  Google Scholar 

  • Garrett BE, Holtzman SG (1995) Does adenosine receptor blockade mediate caffeine-induced rotational behavior? J Pharmacol Exp Ther 274:207–214

    PubMed  CAS  Google Scholar 

  • Glowa JR (1986) Some effects of d-amphetamine, caffeine, nicotine and cocaine on schedule-controlled responding of the mouse. Neuropsychopharmacology 25:1127–1135

    CAS  Google Scholar 

  • Goldberg SR, Prada JA, Katz JL (1985) Stereoselective behavioral effects of N6-phenylisopropyl- adenosine and antagonism by caffeine. Psychopharmacol 87:272–277

    Article  CAS  Google Scholar 

  • Harris RA, Snell D, Loh HH (1978) Effects of d-amphetamine, monomethoxyamphetamines and hallucinogens on schedule-controlled behavior. J Pharmacol Exp Ther 204:103–117

    PubMed  CAS  Google Scholar 

  • Hauber W, Neuscheler P, Nagel J, Müller CE (2001) Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A(2A) receptors in the caudate-putamen of rats. Eur J Neurosci 14:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Heffner TG, Drawbaugh RB, Zigmond MJ (1974) Amphetamine and operant behavior in rats: relationship between drug effect and control response rate. J Comp Physiol Psychol 86:1031–1043

    Article  PubMed  CAS  Google Scholar 

  • Hettinger BD, Lee A, Linden J, Rosin DL (2001) Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431:331–346

    Article  PubMed  CAS  Google Scholar 

  • Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferre S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    Article  PubMed  CAS  Google Scholar 

  • Holtzman SG, Finn IB (1988) Tolerance to behavioral effects of caffeine in rats. Pharmacol Biochem Behav 29:411–418

    Article  PubMed  CAS  Google Scholar 

  • Ishiwari K, Madson LJ, Farrar AM, Mingote SM, Valenta JP, DiGianvittorio MD, Frank LE, Correa M, Hockemeyer J, Müller C, Salamone JD (2007) Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats. Behav Brain Res 178:190–199

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Williams M (1989) Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2-selective agonist, [3H]CGS 21680. Eur J Pharmacol 168:243–246

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2005) A novel dopamine agonist for the transdermal treatment of Parkinson’s disease. Neurology 65(2 suppl 1):S3–S5

    PubMed  CAS  Google Scholar 

  • Justinova Z, Ferre S, Segal PN, Antoniou K, Solinas M, Pappas LA, Highkin JL, Hockemeyer J, Munzar P, Goldberg SR (2003) Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats. J Pharmacol Exp Ther 307:977–986

    Article  PubMed  CAS  Google Scholar 

  • Justinova Z, Ferré S, Barnes C, Wertheim CE, Pappas LA, Goldberg SR, Le Foll B (2009) Effects of chronic caffeine exposure on adenosinergic modulation of the discriminative-stimulus effects of nicotine, methamphetamine, and cocaine in rats. Psychopharmacology 203:355–367

    Article  PubMed  CAS  Google Scholar 

  • Karcz-Kubicha M, Antoniou K, Terasmaa A, Quarta D, Solinas M, Justinova Z, Pezzola A, Reggio R, Müller CE, Fuxe K, Goldberg SR, Popoli P, Ferré S (2003) Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology 28:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Katz JL, Prada JA, Goldberg SR (1988) Effects of adenosine analogs alone and in combination with caffeine in the squirrel monkey. Pharmacol Biochem Behav 29:429–432

    Article  PubMed  CAS  Google Scholar 

  • Kelleher RT, Morse WH (1968) Determinants of the specificity of behavioral effects of drugs. Ergeb Physiol 60:1–56

    PubMed  CAS  Google Scholar 

  • Keppel G (1991) Design and analysis: a researcher’s handbook. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lobato KR, Binfaré RW, Budni J, Rosa AO, Santos AR, Rodrigues AL (2008) Involvement of the adenosine A1 and A2A receptors in the antidepressant-like effect of zinc in the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 32:994–999

    Article  PubMed  CAS  Google Scholar 

  • Logan L, Carney JM, Holloway FA, Seale TW (1989) Effects of caffeine, cocaine and their combination on fixed-interval behavior in rats. Pharmacol Biochem Behav 33:99–104

    Article  PubMed  CAS  Google Scholar 

  • Maemoto T, Finlayson K, Olverman HJ, Akahane A, Horton RW, Butcher SP (1997) Species differences in brain adenosine A1 receptor pharmacology revealed by use of xanthine and pyrazolopyridine based antagonists. Br J Pharmacol 122:1202–1208

    Article  PubMed  CAS  Google Scholar 

  • Maione S, de Novellis V, Cappellacci L, Palazzo E, Vita D, Luongo L, Stella L, Franchetti P, Marabese I, Rossi F, Grifantini M (2007) The antinociceptive effect of 2-chloro-2′-C-methyl-N6-cyclopentyladenosine (2′-Me-CCPA), a highly selective adenosine A1 receptor agonist, in the rat. Pain 131:281–292

    Article  PubMed  CAS  Google Scholar 

  • Marek GJ, Heffner TG, Richards JB, Shaughnessy RA, Li AA, Seiden LS (1993) Effects of caffeine and PD 116,600 on the differential-reinforcement-of-low rate 72-S (DRL 72-S) schedule of reinforcement. Pharmacol Biochem Behav 45:987–990

    Article  PubMed  CAS  Google Scholar 

  • Marston HM, Finlayson K, Maemoto T, Olverman HJ, Akahane A, Sharkey J, Butcher SP (1998) Pharmacological characterization of a simple behavioral response mediated selectively by central adenosine A1 receptors, using in vivo and in vitro techniques. J Pharmacol Exp Ther 285:1023–1030

    PubMed  CAS  Google Scholar 

  • McKim WA (1980) The effect of caffeine, theophylline and amphetamine on operant responding of the mouse. Psychopharmacology 68:135–138

    Article  PubMed  CAS  Google Scholar 

  • McMillan DE (1968a) The effects of sympathomimetic amines on schedule controlled behavior in the pigeon. J Pharmacol Exp Ther 160:315–325

    PubMed  CAS  Google Scholar 

  • McMillan DE (1968b) Some interactions between sympathomimetic amines and amine-depleting agents on the schedule controlled behavior of the pigeon and the squirrel monkey. J Pharmacol Exp Ther 163:172–187

    PubMed  CAS  Google Scholar 

  • Mechner F, Latranyi M (1963) Behavioral effects of caffeine, methamphetamine and methylphenidate in the rat. J Exp Anal Behav 6:331–342

    Article  PubMed  CAS  Google Scholar 

  • Morelli M, Wardas J (2001) Adenosine A(2a) receptor antagonists: potential therapeutic and neuroprotective effects in Parkinson’s disease. Neurotox Res 3:545–556

    Article  PubMed  CAS  Google Scholar 

  • Mott AM, Nunes EJ, Collins LE, Port RG, Sink KS, Hockemeyer J, Müller CE, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology 204:103–112

    Article  PubMed  CAS  Google Scholar 

  • Nunes EJ, Randall PA, Santerre JL, Given AB, Sager TN, Correa M, Salamone JD (2010) Differential effects of selective adenosine antagonists on the effort-related impairments induced by dopamine D1 and D2 antagonism. Neuroscience 170:268–280

    Article  PubMed  CAS  Google Scholar 

  • Odum AL, Schaal DW (2000) The effects of morphine on fixed-interval patterning and temporal discrimination. J Exp Anal Behav 74:229–243

    Article  PubMed  CAS  Google Scholar 

  • O’Neill M, Brown VJ (2006) The effect of the adenosine A(2A) antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology 184:46–55

    Article  PubMed  Google Scholar 

  • O’Neill M, Brown VJ (2007) Amphetamine and the adenosine A(2A) antagonist KW-6002 enhance the effects of conditional temporal probability of a stimulus in rats. Behav Neurosci 121:535–542

    Article  PubMed  Google Scholar 

  • Pinna A (2010) Novel investigational adenosine A2A receptor antagonists for Parkinson’s disease. Expert Opin Investig Drugs 18:1619–1631

    Article  Google Scholar 

  • Popoli P, Reggio R, Pèzzola A, Fuxe K, Ferré S (1998) Adenosine A1 and A2A receptor antagonists stimulate motor activity: evidence for an increased effectiveness in aged rats. Neurosci Lett 251:201–204

    Article  PubMed  CAS  Google Scholar 

  • Prediger RD, Takahashi RN (2005) Modulation of short-term social memory in rats by adenosine A1 and A(2A) receptors. Neurosci Lett 376:160–165

    Article  PubMed  CAS  Google Scholar 

  • Reissig CJ, Strain EC, Griffiths RR (2009) Caffeinated energy drinks—a growing problem. Drug Alcohol Depend 99:1–10

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Roberts DC, Koob GF (1983) Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens. J Pharmacol Exp Ther 224:662–673

    PubMed  CAS  Google Scholar 

  • Salamone JD (2010) Preladenant, a novel adenosine A(2A) receptor antagonist for the potential treatment of parkinsonism and other disorders. IDrugs 13:723–731

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Betz AJ, Ishiwari K, Felsted J, Madson L, Mirante B, Clark K, Font L, Korbey S, Sager TN, Hockemeyer J, Muller CE (2008) Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Front Biosci 13:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Farrar AM, Font L, Patel V, Schlar DE, Nunes EJ, Collins LE, Sager TN (2009) Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of dopamine D2 antagonism. Behav Brain Res 201:216–222

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Farrar AM, Nunes EJ, Collins LE (2010) Role of dopamine–adenosine interactions in the brain circuitry regulating effort-related decision making: insights into pathological aspects of motivation. Future Neurol 5:377–392

    Article  CAS  Google Scholar 

  • Sanger DJ (1980) The effects of caffeine on timing behaviour in rodents: comparisons with chlordiazepoxide. Psychopharmacology 68:305–309

    Article  PubMed  CAS  Google Scholar 

  • Sanger DJ, Blackman DE (1974) Rate-dependent effects of drugs: a review of the literature. Pharmacol Biochem Behav 4:73–83

    Article  Google Scholar 

  • Schiffmann SN, Libert F, Vassart G, Vanderhaeghen JJ (1991) Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci Lett 130:177–181

    Article  PubMed  CAS  Google Scholar 

  • Smith CB (1964) Effects of d-amphetamine upon operant behavior of pigeons: enhancements by reserpine. J Pharmacol Exp Ther 146:167–174

    PubMed  CAS  Google Scholar 

  • Spealman RD (1988) Psychomotor stimulant effects of methylxanthines in squirrel monkeys: relation to adenosine antagonism. Psychopharmacology 95:19–24

    Article  PubMed  CAS  Google Scholar 

  • Varty GB, Hodgson RA, Pond AJ, Grzelak ME, Parker EM, Hunter JC (2008) The effects of adenosine A2A receptor antagonists on haloperidol-induced movement disorders in primates. Psychopharmacology 200:393–401

    Article  PubMed  CAS  Google Scholar 

  • Wardas J, Konieczny J, Lorenc-Koci E (2001) SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 41:160–171

    Article  PubMed  CAS  Google Scholar 

  • Webb D, Levine TE (1978) Effects of caffeine on DRL performance in the mouse. Pharmacol Biochem Behav 9:7–10

    Article  PubMed  CAS  Google Scholar 

  • Wenger GR, Dews PB (1976) The effects of phencyclidine, ketamine, delta-amphetamine and pentobarbital on schedule-controlled behavior in the mouse. J Pharmacol Exp Ther 196:616–624

    PubMed  CAS  Google Scholar 

  • Worden LT, Shahriari M, Farrar AM, Sink KS, Hockemeyer J, Müller CE, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology 203:489–499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant to J.S. from the National Institute of Mental Health (MH078023) and to M.C. from Conselleria de Empresa, Universitat i Ciència, Generalitat Valenciana (BEST/2009/157). Y.B. and C.E.M. were supported by the BMBF and the European Commission by an ERANET-NEURON grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Salamone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, P.A., Nunes, E.J., Janniere, S.L. et al. Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists. Psychopharmacology 216, 173–186 (2011). https://doi.org/10.1007/s00213-011-2198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2198-3

Keywords

Navigation