Skip to main content

Advertisement

Log in

Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Investigations of the neural consequences of the effects of cocaine on cognition have centered on specific brain circuits including prefrontal cortex, medial temporal lobe and striatum and their roles in controlling drug dependent behavior and addiction. These regions are critical to many aspects of drug abuse; however recent investigations in addicted individuals have reported possible cognitive deficits that impact recovery and other therapeutic interventions.

Objectives

Therefore a direct assessment of the effects of cocaine as a reward for cognitive function provides a means of determining how brain systems involved such as prefrontal cortex are affected under normal vs. conditions of acute drug exposure as a precursor to the final impaired function in the addicted state.

Methods

Nonhuman primates (NHPs) were tested in a delayed-match-to-sample decision making task to determine effects of high vs. low cognitive load trials on single neuron activity and fluorodeoxyglucose-positron emission tomography (FDG-PET) determined metabolic activation of prefrontal cortex when juice vs. intravenous cocaine were employed as rewards for successful performance.

Results

Cognitive processing in prefrontal cortex was altered primarily on high load trials in which cocaine was randomly presented as the signaled and delivered reward on particular trials. The detrimental actions of cocaine rewards were also shown to persist and impair task performance on subsequent juice rewarded trials.

Conclusions

The findings indicate that one of the ways in which cocaine use may disrupt performance of a cognitive task is to alter neural processing in prefrontal cortex when involved in discriminating circumstances on the basis of low vs. high cognitive demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adinoff B, Devous MD Sr, Cooper DB, Best SE, Chandler P, Harris T, Cervin CA, Cullum CM (2003) Resting regional cerebral blood flow and gambling task performance in cocaine-dependent subjects and healthy comparison subjects. Am J Psychiatry 160:1892–1894

    Article  PubMed  Google Scholar 

  • Ashby FG, Spiering BJ (2004) The neurobiology of category learning. Behav Cogn Neurosci Rev 3:101–113

    Article  PubMed  Google Scholar 

  • Bechara A, Martin EM (2004) Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology 18:152–162

    Article  PubMed  Google Scholar 

  • Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39:376–389

    Article  CAS  PubMed  Google Scholar 

  • Berns GS (1999) Functional neural imaging. Life Sci 65:2531–2540

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Smith HR, Daunais JB, Nader MA, Porrino LJ (2006) Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur J Neurosci 23(11):3109–3118

    Article  PubMed  Google Scholar 

  • Boettiger CA, D'Esposito M (2005) Frontal networks for learning and executing arbitrary stimulus–response associations. J Neurosci 25:2723–2732

    Article  CAS  PubMed  Google Scholar 

  • Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS, Funderburk FR, Ernst M (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Bowman EM, Aigner TG, Richmond BJ (1996) Neural signals in the monkey ventral striatum related to motivation for juice and cocaine. J Neurophysiol 75:1061–1073

    CAS  PubMed  Google Scholar 

  • Bradberry CW (2007) Cocaine sensitization and dopamine mediation of cue effects in rodents, monkeys, and humans: areas of agreement, disagreement, and implications for addiction. Psychopharmacology 191:705–717

    Article  CAS  PubMed  Google Scholar 

  • Bradberry CW, Barrett B, Larimore RL, Jatlow P, Rubino SR (2000) Impact of self-administered cocaine and cocaine cues on extracellular dopamine in mesolimbic and sensorimotor striatum in rhesus monkeys. J Neurosci 20:3874–3883

    CAS  PubMed  Google Scholar 

  • Browndyke JN, Tucker KA, Woods SP, Beauvals J, Cohen RA, Gottschalk PC, Kosten TR (2004) Examining the effect of cerebral perfusion abnormality magnitude on cognitive performance in recently abstinent chronic cocaine abusers. J Neuroimaging 14:162–169

    PubMed  Google Scholar 

  • Buckner RL, Logan J, Donaldson DI, Wheeler ME (2000) Cognitive neuroscience of episodic memory encoding. Acta Psychol 105:127–139

    Article  CAS  Google Scholar 

  • Cho YH, Beracochea D, Jaffard R (1993) Extended temporal gradient for the retrograde and anterogradeamnesia produced by ibotenate entorhinal cortex lesions in mice. J Neurosci 13:1759–1766

    CAS  PubMed  Google Scholar 

  • Cornish JL, Kalivas PW (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 20:RC89

    CAS  PubMed  Google Scholar 

  • Deadwyler SA (2010) Electrophysiological correlates of abused drugs: relation to natural rewards. Ann NY Acad Sci Addict Rev 2(1187):140–147

    Article  Google Scholar 

  • Deadwyler SA, Porrino LP, Siegel JE, Hampson RE (2007) Systemic and nasal delivery of orexin-A (hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27:14239–14247

    Article  CAS  PubMed  Google Scholar 

  • Eberling JL, Roberts JA, De Manincor DJ, Brennan KM, Hanrahan SM, Vanbrocklin HF, Roos MS, Jagust WJ (1995) PET studies of cerebral glucose metabolism in conscious rhesus macaques. Neurobiol Aging 16:825–832

    Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, Zietsch B, Defelipe J, Manger P, Casagrande V, Kaas JH (2006) Specializations of the Granular Prefrontal Cortex of Primates: implications for Cognitive Processing. The Anatomical Record Part A 288A:26–35

    Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667

    Article  CAS  PubMed  Google Scholar 

  • Genovesio A, Brasted PJ, Wise SP (2006) Representation of future and previous spatial goals by separate neural populations in prefrontal cortex. J Neurosci 26:7305–7316

    Article  CAS  PubMed  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    Article  PubMed  Google Scholar 

  • Goldstein RZ, Leskovjan AC, Hoff AL, Hitzemann R, Bashan F, Khalsa SS, Wang GJ, Fowler JS, Volkow ND (2004) Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia 42:1447–1458

    Article  PubMed  Google Scholar 

  • Grant S, Contoreggi C, London ED (2000) Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia 38:1180–1187

    Article  CAS  PubMed  Google Scholar 

  • Hampson RE, Pons TP, Stanford TR, Deadwyler SA (2004) Categorization in the monkey hippocampus: a possible mechanism for encoding information into memory. Proc Natl Acad Sci USA 101:3184–3189

    Article  CAS  PubMed  Google Scholar 

  • Hampson RE, España RA, Rogers GA, Porrino LJ, Deadwyler SA (2009) Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717. Psychopharmacology 202:355–369

    Article  CAS  PubMed  Google Scholar 

  • Hampson RE, Opris I, Deadwyler SA (2010) Neural correlates of fast pupil dilation in nonhuman primates: Relation to behavioral performance and cognitive workload. Behav Brain Res 212:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hester R, Garavan H (2004) Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci 24:11017–11022

    Article  CAS  PubMed  Google Scholar 

  • Hoshi E, Tanji J (2004) Area-selective neuronal activity in the dorsolateral prefrontal cortex for information retrieval and action planning. J Neurophysiol 91:2707–2722

    Article  PubMed  Google Scholar 

  • Howell LL, Hoffman JM, Votaw JR, Landrum AM, Jordan JF (2001) An apparatus and behavioral training protocol to conduct positron emission tomography (PET) neuroimaging in conscious rhesus monkeys. J Neurosci Methods 106:161–169

    Google Scholar 

  • Izquierdo A, Suda RK, Murray EA (2005) Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J Neurosci 25:8534–8542

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Olausson P, De La Garza R, Taylor JR (2002) Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychopharmacology 26:183–190

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW (2004) Glutamate systems in cocaine addiction. Curr Opin Pharmacol 4:23–29

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Karila L, Gorelick D, Weinstein A, Noble F, Benyamina A, Coscas S, Blecha L, Lowenstein W, Martinot JL, Reynaud M, Lepine JP (2007) New treatments for cocaine dependence: a focused review. Int J Neuropsychopharmacol 1–14

  • Kaufman JN, Ross TJ, Stein EA, Garavan H (2003) Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci 23:7839–7843

    CAS  PubMed  Google Scholar 

  • Keri S (2003) The cognitive neuroscience of category learning. Brain Res Brain Res Rev 43:85–109

    Article  PubMed  Google Scholar 

  • Lindner MD, McArthur RA, Deadwyler S, Hampson R, Tariot PN (2008) Development, optimization and use of preclinical behavioral models to maximize the productivity of drug discovery for Alzheimer’s disease. In McArthur RA, Borsini F (eds) Animal and translational models of behavioural disorders, Vol. 2. Elsevier, NY

  • Lundstrom BN, Peterson KM, Anderson J, Johnson M, Franson P, Ingvar M (2003) Isolating the retreival of imagined pictures during episodic memory: activation of the left precuneus and the left inferior frontal cortex. Neuroimage 27:1934–1943

    Article  Google Scholar 

  • Martinez ZA, Colgan M, Baxter LR Jr, Quintana J, Siegel S, Chatziioannou A, Cherry SR, Mazziotta JC, Phelps ME (1997) Oral 18F-fluoro-2-deoxyglucose for primate PET studies without behavioral restraint: demonstration of principle. Am J Primatol 42:215–224

    Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Muhammad R, Wallis JD, Miller EK (2006) A comparison of abstract rules in the prefrontal cortex, premotor cortex, the inferior temporal cortex and the striatum. J Cogn Neurosci 18:974–989

    Article  PubMed  Google Scholar 

  • Murray EA, Bussey TJ, Wise SP (2000) Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp Brain Res 133:114–129

    Article  CAS  PubMed  Google Scholar 

  • Nader MA, Daunais JB, Moore M, Nader S, Moore R, Smith HR, Friedman DP, Porrino LJ (2002) Effects of long-term cocaine self-administration on mesolimbic and nigrostriatal dopamine systems in rhesus monkeys. Neuropsychopharmacology 27:35–46

    Article  CAS  PubMed  Google Scholar 

  • Opris I, Hampson RE, Deadwyler SA (2009) Comparison of neuronal correlates of cocaine and appetitive rewards in nonhuman primates. Neuroscience 163:40–54

    Article  CAS  PubMed  Google Scholar 

  • Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA (2010) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci, in press

  • Paxinos G, Huang XF, Toga AW (2003) The rhesus monkey brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Porrino LJ, Lyons D (2000) Orbital and medial prefrontal cortex and psychostimulant abuse: studies in animal models. Cereb Cortex 10:326–333

    Article  CAS  PubMed  Google Scholar 

  • Porrino LJ, Lyons D, Nader ME, Miller MD, Friedman DP (2001) Metabolic mapping of the effects of cocaine self-administration in the nonhuman primate. Neuropsychopharmacology, rhesus monkey. Brain Res 578:235–243

    Google Scholar 

  • Porrino LJ, Daunais JB, Rogers GA, Hampson RE, Deadwyler SA (2005) Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PLoS Biol 3:e299

    Article  PubMed  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (2002) Limbic–striatal memory systems and drug addiction. Neurobiol Learn Mem 78:625–636

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250–257

    Article  CAS  PubMed  Google Scholar 

  • Simmons JM, Richmond BJ (2008) Dynamic changes in representations of preceding and upcoming reward in monkey orbitofrontal cortex. Cereb Cortex 18:93–103

    Article  PubMed  Google Scholar 

  • Staley JK, Mash DC (1996) Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J Neurosci 16:6100–6106

    CAS  PubMed  Google Scholar 

  • Stout JC, Busemeyer JR, Lin A, Grant SJ, Bonson KR (2004) Cognitive modeling analysis of decision-making processes in cocaine abusers. Psychon Bull Rev 11:742–747

    PubMed  Google Scholar 

  • Sun W, Rebec GV (2006) Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J Neurosci 26:8004–8008

    Article  CAS  PubMed  Google Scholar 

  • Toda S, Shen H, Peters J, Cagle S, Kalivas P (2006) Cocaine Increases Actin Cycling: effects in the Reinstatement Model of Drug Seeking J Neurosci 26:1579–1587

    Google Scholar 

  • Tsujimoto T, Ogawa M, Tsukada H, Takeharu K, Sasaki K (2004) Activation of the ventral and mesial frontal cortex of the monkey by self-initiated movement tasks as revealed by positron emission tomography. Neurosci Lett 258:117–120

    Article  Google Scholar 

  • Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Wolf AP, Dewey SL, Handlesman L (1992) Long-term frontal brain metabolic changes in cocaine abusers. Synapse 11:184–190

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang G-J, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14:169–177

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Wong C, Hitemann R, Pappas NR (1999) Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D2 receptors. J Pharmacol Exp Ther 291:409–415

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Ma Y, Fowler JS, Wong C, Ding YS, Hitzemann R, Swanson JM, Kalivas P (2005) Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci 25:3932–3939

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang G, Telang F, Fowler JS, Logan J, Childress A, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    Article  CAS  PubMed  Google Scholar 

  • Wakazono Y, Kiyatkin EA (2008) Electrophysiological evaluation of the time-course of dopamine uptake inhibition induced by intravenous cocaine at a reinforcing dose. Neuroscience 6:824–835

    Article  Google Scholar 

  • Wallis JD, Miller EK (2003) From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol 90:1790–1806

    Article  PubMed  Google Scholar 

  • Zola SM, Squire LR (2001) Relationship between magnitude of damage to the hippocampus and impaired recognition memory in monkeys. Hippocampus 11:92–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the technical assistance from the following individuals in the above studies: Joshua Long, Michael Todd, Mack Miller, Joseph Noto, and Brian Parrish. This work was supported by NIH grants DA023573, DA06634, and DA026487 to SAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam A. Deadwyler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampson, R.E., Porrino, L.J., Opris, I. et al. Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates. Psychopharmacology 213, 105–118 (2011). https://doi.org/10.1007/s00213-010-2017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2017-2

Keywords

Navigation