Skip to main content
Log in

A new model of the disrupted latent inhibition in C57BL/6J mice after bupropion treatment

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Schizophrenia is characterized by disturbances in attention and information processing that can be measured by latent inhibition (LI). Research has implicated significant aberrations in dopaminergic (DA) neurotransmission in this disorder.

Objectives

The objectives of this study were as follows: to probe whether bupropion disrupts LI; to compare its efficacy to the effects of GBR12783 (specific DA uptake inhibitor) and to amphetamine (DA releaser); to test if antipsychotics would reverse LI deficits induced by bupropion, GBR12783, and amphetamine; and to probe if rolipram (phosphodiesterase-4 inhibitor), which increases cyclic AMP (cAMP) similarly to antipsychotics, effectively corrects drug-induced LI deficits. Based on its efficacy in drug addiction, we also asked if bupropion could block the effect of amphetamine.

Methods

LI was measured in a conditioned emotional response procedure by comparing suppression of drinking in response to a noise in C57BL/6J mice. Mice previously received 0 (nonpreexposed) or 40 noise exposures (preexposed) followed by two or four noise-foot shock pairings.

Results

Bupropion abolished LI in mice, which was corrected by rolipram, but not by haloperidol and clozapine. GBR12783 and amphetamine, but not antidepressants, also disrupted LI, and this was reversed by antipsychotics and rolipram. Both bupropion and amphetamine disrupted LI via conditioning session. Paradoxically, bupropion and GBR12783 also blocked the amphetamine-induced LI deficit.

Conclusions

Efficacy of rolipram but not antipsychotics to reverse the effects of bupropion suggests novel cAMP-dependent and D2 receptor-independent mechanisms of the bupropion-induced LI deficit. Further detailed biochemical analysis of bupropion-induced LI deficit might be a fruitful approach in developing new antipsychotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anglin MD, Burke C, Perrochet B, Stamper E, Dawud-Noursi S (2000) History of the methamphetamine problem. J Psychoactive Drugs 32:137–141

    PubMed  CAS  Google Scholar 

  • Anonymous (1998) Some dugs that cause psychiatric symptoms. Med Lett 40:21–24

    Google Scholar 

  • Ascher JA, Cole JO, Colin JN, Feighner JP, Ferris RM, Fibiger HC, Golden RN, Martin P, Potter WZ, Richelson E et al (1995) Bupropion: a review of its mechanism of antidepressant activity. J Clin Psychiatry 56:395–401

    PubMed  CAS  Google Scholar 

  • Baruch I, Hemsley DR, Gray JA (1988) Differential performance of acute and chronic schizophrenics in a latent inhibition task. J Nerv Ment Dis 176:598–606

    Article  PubMed  CAS  Google Scholar 

  • Biala G, Kruk M (2009) Effects of co-administration of bupropion and nicotine or D-amphetamine on the elevated plus maze test in mice. J Pharm Pharmacol 61:493–502

    Article  PubMed  CAS  Google Scholar 

  • Black MD, Varty GB, Arad M, Barak S, De Levie A, Boulay D, Pichat P, Griebel G, Weiner I (2009) Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl) 202:385–396

    Article  CAS  Google Scholar 

  • Bredeloux P, Dubuc I, Costentin J (2007) Comparisons between bupropion and dexamphetamine in a range of in vivo tests exploring dopaminergic transmission. Br J Pharmacol 150:711–719

    Article  PubMed  CAS  Google Scholar 

  • Brustolim D, Ribeiro-dos-Santos R, Kast RE, Altschuler EL, Soares MB (2006) A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 6:903–907

    Article  PubMed  CAS  Google Scholar 

  • Chang T, Meyer U, Feldon J, Yee BK (2007) Disruption of the US pre-exposure effect and latent inhibition in two-way active avoidance by systemic amphetamine in C57BL/6 mice. Psychopharmacology (Berl) 191:211–221

    Article  CAS  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar KJ, Mackie S, Christie S, Ogawa F et al (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    Article  PubMed  CAS  Google Scholar 

  • Cooper BR, Hester TJ, Maxwell RA (1980) Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo. Pharmacol Exp Ther 215:127–134

    CAS  Google Scholar 

  • Crowe SF, Neath J, Hale MW (2009) The type 4 phosphodiesterase inhibitors rolipram and YM976 facilitate recall of the weak version of the passive avoidance task in the day-old chick. Pharmacol Biochem Behav 92:224–230

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  PubMed  CAS  Google Scholar 

  • David DJ, Renard CE, Jolliet P, Hascoët M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373–382

    CAS  Google Scholar 

  • Dunn LA, Atwater GE, Kilts CD (1993) Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl) 112:315–323

    Article  CAS  Google Scholar 

  • Duterte-Boucher D, Kamenka JM, Costentin J (1990) Comparison of the effects of three indirect dopamine agonists, GK13, GBR12783 and dexamphetamine on behavioural tests involving central catecholaminergic transmissions. Psychopharmacology 101:344–353

    Article  PubMed  CAS  Google Scholar 

  • Elkashef AM, Rawson RA, Anderson AL, Li SH, Holmes T, Smith EV et al (2008) Bupropion for the treatment of methamphetamine dependence. Neuropsychopharmacology 33:1162–1170

    Article  PubMed  CAS  Google Scholar 

  • El Mansari M, Ghanbari R, Janssen S, Blier P (2008) Sustained administration of bupropion alters the neuronal activity of serotonin, norepinephrine but not dopamine neurons in the rat brain. Neuropharmacology 55:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Fabre LF, McLendon DM (1978) Double-blind placebo controlled study of Wellbutrin in the treatment of depressed in-patients. Curr Ther Res Opinion 23:393–402

    Google Scholar 

  • Fava M, Rush AJ, Thase ME, Clayton A, Stahl SM, Pradko JF et al (2005) 15 years of clinical experience with bupropion HCl: from bupropion to bupropion SR to bupropion XL. Prim Care Companion J Clin Psychiatry 7:106–113

    Article  PubMed  Google Scholar 

  • Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 208:203–209

    PubMed  CAS  Google Scholar 

  • Gray NS, Hemsley DR, Gray JA (1992) Abolition of latent inhibition in acute, but not chronic, schizophrenics. Neurol Psychiat Brain Res 1:83–89

    Google Scholar 

  • Halene TB, Siegel SJ (2008) Antipsychotic-like properties of phosphodiesterase 4 inhibitors: evaluation of 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO-20-1724) with auditory event-related potentials and prepulse inhibition of startle. J Pharmacol Exp Ther 326:230–239

    Article  PubMed  CAS  Google Scholar 

  • Howard WT, Warnock JK (1999) Bupropion-induced psychosis. Am J Psychiatry 156:2017–2018

    PubMed  CAS  Google Scholar 

  • Ilyutchenok RY, Loskutova LV, Finkelberg AL, Dubrovina NI (1992) Neurochemical mechanisms of memory control. Acta Physiol Hung 79:419–432

    PubMed  CAS  Google Scholar 

  • Johnston JA, Lineberry CG, Frieden CS (1986) Prevalence of psychosis, delusions, and hallucinations in clinical trials with bupropion. Am J Psychiatry 143:1192–1193

    PubMed  CAS  Google Scholar 

  • Joseph MH, Peters SL, Gray JA (1993) Nicotine blocks latent inhibition in rats: evidence for a critical role of increased functional activity of dopamine in the mesolimbic system at conditioning rather than pre-exposure. Psychopharmacology (Berl) 110:187–192

    Article  CAS  Google Scholar 

  • Kaneko M, Sato K, Horikoshi R, Yaginuma M, Yaginuma N, Shiragata M et al (1992) Effect of haloperidol on cyclic AMP and inositol trisphosphate in rat striatum in vivo. Prostaglandins Leukot Essent Fatty Acids 46:53–57

    Article  PubMed  CAS  Google Scholar 

  • Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP (2007) Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 144:239–246

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Westphalen R, Callahan B, Hatzidimitriou G, Yuan J, Ricaurte GA (2000) Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity. J Pharmacol Exp Ther 293:625–633

    PubMed  CAS  Google Scholar 

  • Kulkarni SK, Singh K, Bishnoi M (2008) Comparative behavioural profile of newer antianxiety drugs on different mazes. Indian J Exp Biol 46:633–638

    PubMed  CAS  Google Scholar 

  • Learned-Coughlin SM, Bergström M, Savitcheva I, Ascher J, Schmith VD, Langstrom B (2003) In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography. Biol Psychiatry 54:800–805

    Article  PubMed  CAS  Google Scholar 

  • Lipina T, Labrie V, Weiner I, Roder J (2005) Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology 179:54–67

    Article  PubMed  CAS  Google Scholar 

  • Lubow RE (1989) Latent inhibition and conditioned attentional theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Marek GJ, Vosmer G, Seiden LS (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res 513:274–279

    Article  PubMed  CAS  Google Scholar 

  • Margolin A, Kosten TR, Avants SK, Wilkins J, Ling W, Beckson M et al (1995) A multicenter trial of bupropion for cocaine dependence in methadone-maintained patients. Drug Alcohol Depend 40:125–131

    Article  PubMed  CAS  Google Scholar 

  • Martin LF, Kem WR, Freedman R (2004) Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 174:54–64

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CR, Kanes SJ, Abel T, Siegel SJ (2004) Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 129:101–107

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Chang DL, Feldon J, Yee BK (2004) Expression of the CS- and US-pre-exposure effects in the conditioned taste aversion paradigm and their abolition following systemic amphetamine treatment in C57BL6/J mice. Neuropsychopharmacology 29:2140–2148

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Schreiber R, Dekeyne A, Rivet JM, Bervoets K, Mavridis M et al (1998) S 16924 ((R)-2-[1-[2-(2, 3-dihydro-benzo[1, 4] dioxin-5-yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: II. Functional profile in comparison to clozapine and haloperidol. J Pharmacol Exp Ther 286:1356–1373

    PubMed  CAS  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 33:275–307

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Livak V, Paul HW, Laux G (2002) Acute psychosis after administration of bupropion hydrochloride (Zyban). Pharmacopsychiatry 35:247–248

    Article  PubMed  CAS  Google Scholar 

  • Nomikos GG, Damsma G, Wenkstern D, Fibiger HC (1990) In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis. Synapse 6:106–112

    Article  PubMed  CAS  Google Scholar 

  • Nomikos GG, Damsma G, Wenkstern D, Fibiger HC (1992) Effects of chronic bupropion on interstitial concentrations of dopamine in rat nucleus accumbens and striatum. Neuropsychopharmacology 7:7–14

    PubMed  CAS  Google Scholar 

  • Phillips TJ, Kamens HM, Wheeler JM (2008) Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 32:707–759

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Chermat R, Lenègre A, Avril I, Janvier S, Stéru L (1987) Use of the automated tail suspension test for the primary screening of psychotropic agents. Arch Int Pharmacodyn Ther 288:11–30

    PubMed  CAS  Google Scholar 

  • Portugal GS, Gould TJ (2007) Bupropion dose-dependently reverses nicotine withdrawal deficits in contextual fear conditioning. Pharmacol Biochem Behav 88:179–187

    Article  PubMed  CAS  Google Scholar 

  • Pouzet B, Andersen MP, Hogg S (2005) Effects of acute treatment with antidepressant drugs on sensorimotor gating deficits in rats. Psychopharmacology (Berl) 178:9–16

    Article  CAS  Google Scholar 

  • Raiteri M, Cerrito F, Cervoni AM, Levi G (1979) Dopamine can be released by two mechanisms differently affected by the dopamine transporter inhibitor nomifensine. J Pharmacol Exp Ther 208:195–202

    PubMed  CAS  Google Scholar 

  • Ralph RJ, Paulus MP, Geyer MA (2001) Strain-specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. J Pharmacol Exp Ther 298:148–155

    PubMed  CAS  Google Scholar 

  • Rauhut AS, Hawrylak M, Mardekian SK (2008) Bupropion differentially alters the aversive, locomotor and rewarding properties of nicotine in CD-1 mice. Pharmacol Biochem Behav 90:598–607

    Article  PubMed  CAS  Google Scholar 

  • Redolat R, Vidal J, Gómez MC, Carrasco MC (2005) Effects of acute bupropion administration on locomotor activity in adolescent and adult mice. Behav Pharmacol 16:59–62

    Article  PubMed  CAS  Google Scholar 

  • Reichel CM, Linkugel JD, Bevins RA (2008) Bupropion differentially impacts acquisition of methamphetamine self-administration and sucrose-maintained behavior. Pharmacol Biochem Behav 89:463–472

    Article  PubMed  CAS  Google Scholar 

  • Richmond RL, Zwar NA (2003) Review of bupropion for smoking cessation. Drug Alcohol Rev 22:203–220

    Article  PubMed  Google Scholar 

  • Ripoll N, David DJ, Dailly E, Hascoët M, Bourin M (2003) Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143:193–200

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    Article  PubMed  CAS  Google Scholar 

  • Russig H, Kovacevic A, Murphy CA, Feldon J (2003) Haloperidol and clozapine antagonise amphetamine-induced disruption of latent inhibition of conditioned taste aversion. Psychopharmacology (Berl) 170:263–270

    Article  CAS  Google Scholar 

  • Rutten K, Lieben C, Smits L, Blokland A (2007) The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology (Berl) 192:275–282

    Article  CAS  Google Scholar 

  • Scott R, Bourtchuladze R, Gossweiler S, Dubnau J, Tully T (2002) CREB and the discovery of cognitive enhancers. J Mol Neurosci 19:171–177

    Article  PubMed  CAS  Google Scholar 

  • Scuvée-Moreau J, Giesbers I, Dresse A (1987) Effect of rolipram, a phosphodiesterase inhibitor and potential antidepressant, on the firing rate of central monoaminergic neurons in the rat. Arch Int Pharmacodyn Ther 288:43–49

    PubMed  Google Scholar 

  • Shadach E, Gaisler I, Schiller D, Weiner I (2000) The latent inhibition model dissociates between clozapine, haloperidol, and ritanserin. Neuropsychopharmacology 23:151–161

    Article  PubMed  CAS  Google Scholar 

  • Siegel SJ, Maxwell CR, Majumdar S, Trief DF, Lerman C, Gur RE et al (2005) Monoamine reuptake inhibition and nicotine receptor antagonism reduce amplitude and gating of auditory evoked potentials. Neuroscience 133:729–738

    Article  PubMed  CAS  Google Scholar 

  • Slemmer JR, Martin BR, Damaj MI (2000) Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 295:321–327

    PubMed  CAS  Google Scholar 

  • Stathis M, Scheffel U, Lever SZ, Boja JW, Carroll FI, Kuhar MJ (1995) Rate of binding of various inhibitors at the dopamine transporter in vivo. Psychopharmacology (Berl) 119:376–384

    Article  CAS  Google Scholar 

  • Stepanov V, Järv J (2008) Kinetic mechanism of dopamine transporter interaction with 1-(2-(bis-(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909). Neurochem Int 53:370–373

    Article  PubMed  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Mico JA, Lenegre A, Steru M (1987) The automated Tail Suspension Test: a computerized device, which differentiates psychotropic drugs. Prog Neuropsychopharmacol Biol Psychiatry 11:659–671

    Article  PubMed  CAS  Google Scholar 

  • Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia—a synthesis and selective review. J Psychopharmacol 21:440–452

    Article  PubMed  CAS  Google Scholar 

  • Tiligada E, Zampeli E, Sander K, Stark H (2009) Histamine H3 and H4 receptors as novel drug targets. Expert Opin Investig Drugs 18:1519–1531

    Article  PubMed  CAS  Google Scholar 

  • Torregrossa MM, Folk JE, Rice KC, Watson SJ, Woods JH (2005) Chronic administration of the delta opioid receptor agonist (+)BW373U86 and antidepressants on behavior in the forced swim test and BDNF mRNA expression in rats. Psychopharmacology (Berl) 183:31–40

    Article  CAS  Google Scholar 

  • Warburton EC, Joseph MH, Feldon J, Weiner I, Gray JA (1994) Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron: implications for a possible antipsychotic action of ondansetron. Psychopharmacology (Berl) 114:657–664

    Article  CAS  Google Scholar 

  • Weiner I (1990) Neural substrates of latent inhibition: the switching model. Psychol Bull 108:442–461

    Article  PubMed  CAS  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 169:257–297

    Article  CAS  Google Scholar 

  • Weiner I, Lubow RE, Feldon J (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology (Berl) 83:194–199

    Article  CAS  Google Scholar 

  • Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behav 30:871–878

    Article  PubMed  CAS  Google Scholar 

  • Weiner I, Shadach E, Tarrasch R, Kidron R, Feldon J (1996) The latent inhibition model of schizophrenia: further validation using the atypical neuroleptic, clozapine. Biol Psychiatry 40:834–843

    Article  PubMed  CAS  Google Scholar 

  • Weiner I, Schiller D, Gaisler-Salomon I, Green A, Joel D (2003) A comparison of drug effects in latent inhibition and the forced swim test differentiates between the typical antipsychotic haloperidol, the atypical antipsychotics clozapine and olanzapine, and the antidepressants imipramine and paroxetine. Behav Pharmacol 14:215–222

    PubMed  CAS  Google Scholar 

  • Yamada J, Sugimoto Y, Yamada S (2004) Involvement of dopamine receptors in the anti-immobility effects of dopamine re-uptake inhibitors in the forced swimming test. Eur J Pharmacol 504:207–211

    Article  PubMed  CAS  Google Scholar 

  • Yates JW, Meij JT, Sullivan JR, Richtand NM, Yu L (2007) Bimodal effect of amphetamine on motor behaviors in C57BL/6 mice. Neurosci Lett 427:66–70

    Article  PubMed  CAS  Google Scholar 

  • Zahniser NR, Sorkin A (2004) Rapid regulation of the dopamine transporter: role in stimulant addiction? Neuropharmacology 47(Suppl 1):80–91

    Article  PubMed  CAS  Google Scholar 

  • Zarrindast MR, Hodjati MR, Pejhan A, Soleimannejad E (1996) Bupropion induces sniffing: a possible dopaminergic mechanism. Eur Neuropsychopharmacol 6:299–303

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Whisler LR, Huang Y, Xiang Y, O’Donnell JM (2009) Postsynaptic alpha-2 adrenergic receptors are critical for the antidepressant-like effects of desipramine on behavior. Neuropsychopharmacology 34:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Zung WWK (1983) Review of placebo controlled trials with bupropion. J Clin Psychiatry 44:104–114

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Ontario Mental Health Foundation (OMHF) and the Canadian Institutes of Health Research (CIHR). We thank Professor Ina Weiner for helpful discussion of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Lipina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipina, T., Roder, J. A new model of the disrupted latent inhibition in C57BL/6J mice after bupropion treatment. Psychopharmacology 208, 487–498 (2010). https://doi.org/10.1007/s00213-009-1749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1749-3

Keywords

Navigation