Skip to main content
Log in

The effects of adolescent methylphenidate self-administration on responding for a conditioned reward, amphetamine-induced locomotor activity, and neuronal activation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Abuse of methylphenidate (Ritalin) is rising, particularly during adolescence and early adulthood, but the long-term effects of its abuse during adolescence are unclear.

Methods

In experiment 1, we examined the effect of adolescent methylphenidate self-administration (0.0625 mg/infusion), as compared with cocaine self-administration (0.125 mg/infusion), under a fixed ratio 1 schedule of reinforcement in male Sprague–Dawley rats during adolescence (postnatal day (PND) 32–47) on adult dopamine-mediated behaviors (PND >70). These included responding for a conditioned reward (CR), a measure of incentive motivation, and amphetamine-induced locomotor activity. In experiment 2, we aimed to replicate and enhance the effects observed in experiment 1, and we also examined the effects of methylphenidate self-administration during adolescence on adult amphetamine-induced zif268 messenger ribonucleic acid (mRNA) expression.

Results

Adolescent rats self-administered both cocaine and methylphenidate. There was no effect of adolescent drug self-administration on adult baseline or amphetamine-induced responding for a CR. However, both adolescent methylphenidate and cocaine self-administration increased amphetamine-induced locomotion. Adolescent methylphenidate self-administration also enhanced amphetamine-induced zif268 mRNA expression in the nucleus accumbens.

Conclusions

Our findings suggest that repeated, behaviorally contingent exposure to methylphenidate during adolescence enhances responsivity to the locomotor-stimulating and neuronal activating effects of amphetamine but not incentive motivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achat-Mendes C, Anderson KL, Itzhak Y (2003) Methylphenidate and MDMA adolescent exposure in mice: long-lasting consequences on cocaine-induced reward and psychomotor stimulation in adulthood. Neuropharmacology 45:106–115

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C (2006) Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression. Neuropsychopharmacology 31:1946–1956

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH (2000) Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37:167–169

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA Jr (2002) Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci 5:13–14

    Article  PubMed  CAS  Google Scholar 

  • Anthony JC, Petronis KR (1995) Early-onset drug use and risk of later drug problems. Drug Alcohol Depend 40:9–15

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Kotaki H, Iga T (1990) Dose-dependent kinetics of methylphenidate enantiomers after oral administration of racemic methylphenidate to rats. J Pharmacobiodyn 13:647–652

    PubMed  CAS  Google Scholar 

  • Arvanitogiannis A, Sullivan J, Amir S (2000) Time acts as a conditioned stimulus to control behavioral sensitization to amphetamine in rats. Neuroscience 101:1–3

    Article  PubMed  CAS  Google Scholar 

  • Babcock Q, Byrne T (2000) Student perceptions of methylphenidate abuse at a public liberal arts college. J Am Coll Health 49:143–145

    Article  PubMed  CAS  Google Scholar 

  • Badanich KA, Adler KJ, Kirstein CL (2006) Adolescents differ from adults in cocaine conditioned place preference and cocaine-induced dopamine in the nucleus accumbens septi. Eur J Pharmacol 550:95–106

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ, Ranaldi R (1992) The effects of amphetamine, apomorphine, SKF 38393, quinpirole and bromocriptine on responding for conditioned reward in rats. Behav Pharmacol 3:155–163

    Article  PubMed  CAS  Google Scholar 

  • Bhat RV, Baraban JM (1993) Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems. J Pharmacol Exp Ther 267:496–505

    PubMed  CAS  Google Scholar 

  • Bolanos CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ (2003) Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiatry 54:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Botly LC, Burton CL, Rizos Z, Fletcher PJ (2008) Characterization of methylphenidate self-administration and reinstatement in the rat. Psychopharmacology (Berl) 199:55–66

    Article  CAS  Google Scholar 

  • Brandon CL, Steiner H (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J NeuroSci 18:1584–1592

    Article  PubMed  Google Scholar 

  • Brandon CL, Marinelli M, Baker LK, White FJ (2001) Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology 25:651–661

    Article  PubMed  CAS  Google Scholar 

  • Brenhouse HC, Stellar JR (2006) c-Fos and deltaFosB expression are differentially altered in distinct subregions of the nucleus accumbens shell in cocaine-sensitized rats. Neuroscience 137:773–780

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Mague SD, Andersen SL (2003) Enduring behavioral effects of early exposure to methylphenidate in rats. Biol Psychiatry 54:1330–1337

    Article  PubMed  CAS  Google Scholar 

  • Caster JM, Walker QD, Kuhn CM (2007) A single high dose of cocaine induces differential sensitization to specific behaviors across adolescence. Psychopharmacology (Berl) 193:247–260

    Article  CAS  Google Scholar 

  • Chefer VI, Moron JA, Hope B, Rea W, Shippenberg TS (2000) Kappa-opioid receptor activation prevents alterations in mesocortical dopamine neurotransmission that occur during abstinence from cocaine. Neuroscience 101:619–627

    Article  PubMed  CAS  Google Scholar 

  • Collins RJ, Weeks JR, Cooper MM, Good PI, Russell RR (1984) Prediction of abuse liability of drugs using IV self-administration by rats. Psychopharmacology (Berl) 82:6–13

    Article  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • Estroff TW, Schwartz RH, Hoffmann NG (1989) Adolescent cocaine abuse. Addictive potential, behavioral and psychiatric effects. Clin Pediatr (Phila) 28:550–555

    Article  CAS  Google Scholar 

  • Filip M, Faron-Gorecka A, Kusmider M, Golda A, Frankowska M, Dziedzicka-Wasylewska M (2006) Alterations in BDNF and trkB mRNAs following acute or sensitizing cocaine treatments and withdrawal. Brain Res 1071:218–225

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Korth KM, Sabijan MS, DeSousa NJ (1998) Injections of D-amphetamine into the ventral pallidum increase locomotor activity and responding for conditioned reward: a comparison with injections into the nucleus accumbens. Brain Res 805:29–40

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Botly LC, Rizos Z (2006) Characterization of methylphenidate self-administration and reinstatement in the rat. Society for Neuroscience, Atlanta

    Google Scholar 

  • Frantz KJ, O’Dell LE, Parsons LH (2006) Behavioral and neurochemical responses to cocaine in periadolescent and adult rats. Neuropsychopharmacology 32:625–637

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87:6912–6916

    Article  PubMed  CAS  Google Scholar 

  • Henry DJ, White FJ (1991) Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J Pharmacol Exp Ther 258:882–890

    PubMed  CAS  Google Scholar 

  • Izawa R, Jaber M, Deroche-Gamonet V, Sillaber I, Kellendonk C, Le Moal M, Tronche F, Piazza PV (2006) Gene expression regulation following behavioral sensitization to cocaine in transgenic mice lacking the glucocorticoid receptor in the brain. Neuroscience 137:915–924

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Fischman MW (1989) The pharmacology of cocaine related to its abuse. Pharmacol Rev 41:3–52

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269:58–72

    Article  PubMed  CAS  Google Scholar 

  • Kandel D, Yamaguchi K (1993) From beer to crack: developmental patterns of drug involvement. Am J Public Health 83:851–855

    Article  PubMed  CAS  Google Scholar 

  • Kantak KM, Goodrich CM, Uribe V (2007) Influence of sex, estrous cycle, and drug-onset age on cocaine self-administration in rats (Rattus norvegicus). Exp Clin Psychopharmacol 15:37–47

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter KA, Kantak KM (2007) Differential effects of self-administered cocaine in adolescent and adult rats on stimulus-reward learning. Psychopharmacology (Berl) 194:403–411

    Article  CAS  Google Scholar 

  • Klein-Schwartz W, McGrath J (2003) Poison centers’ experience with methylphenidate abuse in pre-teens and adolescents. J Am Acad Child Adolesc Psych 42:288–294

    Article  Google Scholar 

  • Laviola G, Adriani W (1998) Evaluation of unconditioned novelty-seeking and d-amphetamine-conditioned motivation in mice. Pharmacol Biochem Behav 59:1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Wood RD, Kuhn C, Francis R, Spear LP (1995) Cocaine sensitization in periadolescent and adult rats. J Pharmacol Exp Ther 275:345–357

    PubMed  CAS  Google Scholar 

  • Laviola G, Adriani W, Terranova ML, Gerra G (1999) Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neurosci Biobehav Rev 23:993–1010

    Article  PubMed  CAS  Google Scholar 

  • Leith NJ, Kuczenski R (1981) Chronic amphetamine: tolerance and reverse tolerance reflect different behavioral actions of the drug. Pharmacol Biochem Behav 15:399–404

    Article  PubMed  CAS  Google Scholar 

  • Li C, Frantz KJ (2009) Attenuated incubation of cocaine seeking in male rats trained to self-administer cocaine during periadolescence. Psychopharmacology (Berl) 204:725–733

    Article  CAS  Google Scholar 

  • Lynch WJ (2008) Acquisition and maintenance of cocaine self-administration in adolescent rats: effects of sex and gonadal hormones. Psychopharmacology (Berl) 197:237–246

    Article  CAS  Google Scholar 

  • Marusich JA, Bardo MT (2009) Differences in impulsivity on a delay-discounting task predict self-administration of a low unit dose of methylphenidate in rats. Behav Pharmacol 20:447–454

    Article  PubMed  Google Scholar 

  • Mattson BJ, Bossert JM, Simmons DE, Nozaki N, Nagarkar D, Kreuter JD, Hope BT (2005) Cocaine-induced CREB phosphorylation in nucleus accumbens of cocaine-sensitized rats is enabled by enhanced activation of extracellular signal-related kinase, but not protein kinase A. J Neurochem 95:1481–1494

    Article  PubMed  CAS  Google Scholar 

  • McCabe SE, Teter CJ, Boyd CJ, Guthrie SK (2004) Prevalence and correlates of illicit methylphenidate use among 8th, 10th, and 12th grade students in the United States, 2001. J Adolesc Health 35:501–504

    PubMed  Google Scholar 

  • McKittrick CR, Abercrombie ED (2007) Catecholamine mapping within nucleus accumbens: differences in basal and amphetamine-stimulated efflux of norepinephrine and dopamine in shell and core. J Neurochem 100:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Mead AN, Rocha BA, Donovan DM, Katz JL (2002) Intravenous cocaine induced-activity and behavioural sensitization in norepinephrine-, but not dopamine-transporter knockout mice. Eur J NeuroSci 16:514–520

    Article  PubMed  Google Scholar 

  • Morton WA, Stockton GG (2000) Methylphenidate abuse and psychiatric side effects. Prim Care Companion J Clin Psychiat 2:159–164

    Article  Google Scholar 

  • Nielsen JA, Duda NJ, Mokler DJ, Moore KE (1984) Self-administration of central stimulants by rats: a comparison of the effects of d-amphetamine, methylphenidate and McNeil 4612. Pharmacol Biochem Behav 20:227–232

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  • Perry JL, Anderson MM, Nelson SE, Carroll ME (2007) Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake. Physiol Behav 91:126–133

    Article  PubMed  CAS  Google Scholar 

  • Pickens R, Thompson T (1968) Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size. J Pharmacol Exp Ther 161:122–129

    PubMed  CAS  Google Scholar 

  • Pum M, Carey RJ, Huston JP, Muller CP (2007) Dissociating effects of cocaine and d-amphetamine on dopamine and serotonin in the perirhinal, entorhinal, and prefrontal cortex of freely moving rats. Psychopharmacology (Berl) 193:375–390

    Article  CAS  Google Scholar 

  • Ranaldi R, Beninger RJ (1993) Dopamine D1 and D2 antagonists attenuate amphetamine-produced enhancement of responding for conditioned reward in rats. Psychopharmacology (Berl) 113:110–118

    Article  CAS  Google Scholar 

  • Robinson TE, Becker JB (1982) Behavioral sensitization is accompanied by an enhancement in amphetamine-stimulated dopamine release from striatal tissue in vitro. Eur J Pharmacol 85:253–254

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–S117

    PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J NeuroSci 11:1598–1604

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Gorny G, Mitton E, Kolb B (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39:257–266

    Article  PubMed  CAS  Google Scholar 

  • Scheffler RM, Hinshaw SP, Modrek S, Levine P (2007) The global market for ADHD medications. Health Aff (Millwood) 26:450–457

    Article  Google Scholar 

  • Schramm-Sapyta NL, Walker QD, Caster JM, Levin ED, Kuhn CM (2009) Are adolescents more vulnerable to drug addiction than adults? Evidence from animal models. Psychopharmacology (Berl) 206:1–21

    Article  CAS  Google Scholar 

  • Segal DS, Mandell AJ (1974) Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol Biochem Behav 2:249–255

    Article  PubMed  CAS  Google Scholar 

  • Shahbazi M, Moffett AM, Williams BF, Frantz KJ (2008) Age- and sex-dependent amphetamine self-administration in rats. Psychopharmacology (Berl) 196:71–81

    Article  CAS  Google Scholar 

  • Shram MJ, Funk D, Li Z, Le AD (2007) Nicotine self-administration, extinction responding and reinstatement in adolescent and adult male rats: evidence against a biological vulnerability to nicotine addiction during adolescence. Neuropsychopharmacology 33:739–748

    Article  PubMed  CAS  Google Scholar 

  • Sorg BA, Davidson DL, Kalivas PW, Prasad BM (1997) Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J Pharmacol Exp Ther 281:54–61

    PubMed  CAS  Google Scholar 

  • Taylor JR, Robbins TW (1984) Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology (Berl) 84:405–412

    Article  CAS  Google Scholar 

  • Teicher MH, Andersen SL, Hostetter JC Jr (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res 89:167–172

    Article  PubMed  CAS  Google Scholar 

  • Tenn CC, Fletcher PJ, Kapur S (2003) Amphetamine-sensitized animals show a sensorimotor gating and neurochemical abnormality similar to that of schizophrenia. Schizophr Res 64:103–114

    Article  PubMed  Google Scholar 

  • Tenn CC, Fletcher PJ, Kapur S (2005) A putative animal model of the “prodromal” state of schizophrenia. Biol Psychiatry 57:586–593

    Article  PubMed  CAS  Google Scholar 

  • Valvassori SS, Frey BN, Martins MR, Reus GZ, Schimidtz F, Inacio CG, Kapczinski F, Quevedo J (2007) Sensitization and cross-sensitization after chronic treatment with methylphenidate in adolescent Wistar rats. Behav Pharmacol 18:205–212

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Swanson JM (2003) Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry 160:1909–1918

    Article  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Hitzemann R, Pappas N (1998) Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 155:1325–1331

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Dewey SL, Hitzemann R, Gifford AN, Pappas NR (1999) Blockade of striatal dopamine transporters by intravenous methylphenidate is not sufficient to induce self-reports of “high”. J Pharmacol Exp Ther 288:14–20

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Ding YS, Gatley SJ (2002) Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol 12:557–566

    Article  PubMed  CAS  Google Scholar 

  • Wooters TE, Dwoskin LP, Bardo MT (2006) Age and sex differences in the locomotor effect of repeated methylphenidate in rats classified as high or low novelty responders. Psychopharmacology (Berl) 188:18–27

    Article  CAS  Google Scholar 

  • Worley PF, Christy BA, Nakabeppu Y, Bhat RV, Cole AJ, Baraban JM (1991) Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci USA 88:5106–5110

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79:945–955

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Beverley JA, Steiner H (2006) Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D1 dopamine receptors: interhemispheric effects. Neuroscience 140:699–709

    Article  PubMed  CAS  Google Scholar 

  • Yokel RA, Pickens R (1973) Self-administration of optical isomers of amphetamine and methylamphetamine by rats. J Pharmacol Exp Ther 187:27–33

    PubMed  CAS  Google Scholar 

  • Young ST, Porrino LJ, Iadarola MJ (1991) Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc Natl Acad Sci USA 88:1291–1295

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Zhang L, Tang Y, Zhang Q, Lou D, Sharp FR, Zhang J, Xu M (2005) Repeated cocaine administration induces gene expression changes through the dopamine D1 receptors. Neuropsychopharmacology 30:1443–1454

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Suzanne Erb and Megan Shram for their advice on procedural aspects of this work and Judy Sinyard, Roger Raymond, Mustansir Diwan, and Silvia Isabella for technical assistance. This work was supported by a Masters Award from the Canadian Institutes of Health Research Masters Award to CLB and a Discovery Grant from Natural Sciences and Engeneering Research Council of Canada to PJF.

Ethical standards

Experiments were carried out in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the National Institutes of Health. Procedures were approved by the CAMH Animal Care Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christie L. Burton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, C.L., Nobrega, J.N. & Fletcher, P.J. The effects of adolescent methylphenidate self-administration on responding for a conditioned reward, amphetamine-induced locomotor activity, and neuronal activation. Psychopharmacology 208, 455–468 (2010). https://doi.org/10.1007/s00213-009-1745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1745-7

Keywords

Navigation