Skip to main content

Advertisement

Log in

Comparison of 50- and 100-g l-tryptophan depletion and loading formulations for altering 5-HT synthesis: pharmacokinetics, side effects, and mood states

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Differences in 5-hydroxytryptamine (5-HT) function have been the subject of extensive research in psychiatric studies. Many studies have manipulated l-tryptophan (Trp) levels to temporarily decrease (depletion) or increase (loading) 5-HT synthesis. While most researchers have used a 100-g formulation, there has been ongoing interest in using smaller-sized formulations.

Objectives

This study examined the time course of multiple plasma indicators of brain 5-HT synthesis after a 50-g depletion and loading as a comparison to the corresponding 100-g formulations that are typically used.

Materials and methods

Plasma was collected from 112 healthy adults at seven hourly intervals after consumption of either a 50- or 100-g depletion or loading. Self-ratings of mood and somatic symptoms were completed before and after Trp manipulations.

Results

The primary findings were that (1) the 50- and 100-g formulations produced the expected changes in plasma indicators after both depletion (−89% and −96%, respectively) and loading (+570% and +372%, respectively); (2) the 100-g depletion showed more robust effects at the 4, 5, and 6 h measurements than the 50-g depletion; (3) there was significant attrition after both the 100-g depletion and loading, but not after either of the 50-g formulations; and (4) both the 50- and 100-g depletions produced increases in negative self-ratings of mood and somatic symptoms, while loading significantly increased negative ratings after the 100 g only.

Conclusions

There are important considerations when choosing among formulation sizes for use in Trp manipulation studies, and the complete 7-h time-course data set of the typical plasma Trp measures presented here may help researchers decide which methodology best suits their needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen PP, Cleare AJ, Lee F, Fusar-Poli P, Tunstall N, Fu CHY, Brammer MJ, McGuire PK (2006) Effect of acute tryptophan depletion on pre-frontal engagement. Psychopharmacology (Berl) 187:486–497

    Article  CAS  Google Scholar 

  • Badawy AA-B, Evans M (1976) Animal liver tryptophan pyrrolases—absence of apoenzyme and of hormonal induction mechanism from species sensitive to tryptophan toxicity. Biochem J 158:79–88

    PubMed  CAS  Google Scholar 

  • Biggio G, Fadda D, Fanni P, Tagliamonte A, Gessa GL (1974) Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci 14:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Bjork JM, Dougherty DM, Moeller FG, Cherek DR, Swann AC (1999) The effects of tryptophan depletion and loading on laboratory aggression in men: time course and a food-restricted control. Psychopharmacology (Berl) 142:24–30

    Article  CAS  Google Scholar 

  • Bjork JM, Dougherty DM, Moeller FG, Swann AC (2000) Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology 22:357–369

    Article  PubMed  CAS  Google Scholar 

  • Bloxam DL, Warren WH (1974) Error in the determination of tryptophan by the method of Denckla and Dewey. A revised procedure. Anal Biochem 60:621–625

    Article  PubMed  CAS  Google Scholar 

  • Bond A, Lader MH (1974) The use of analogue scales in rating subjective feelings. British J Med Psychology 47:211–218

    Google Scholar 

  • Booij L, van der Does AJ, Haffmans PM, Riedel WJ (2005) Acute tryptophan depletion as a model of depressive relapse: behavioural specificity and ethical considerations. J Affect Disord 86:305–311

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1978) Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino acids in rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 303:157–164

    Article  CAS  Google Scholar 

  • Carpenter LL, Anderson GA, Pelton GH, Gudin JA, Kirwin PDS, Price LH, Heninger GR, McDougle CJ (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35

    Article  PubMed  CAS  Google Scholar 

  • Cleare AJ, Bond AJ (1995) The effect of tryptophan depletion and enhancement on subjective and behavioral aggression in normal male subjects. Psychopharmacology (Berl) 118:72–81

    Article  CAS  Google Scholar 

  • Delgado PL, Charney DS, Price LH, Aghajanian GK, Landis H, Heninger GR (1990) Serotonin function and the mechanism of antidepressant action. Arch Gen Psychiatry 47:411–418

    PubMed  CAS  Google Scholar 

  • Denckla WD, Dewey HK (1967) The determination of tryptophan in plasma, liver, and urine. J Lab Clin Med 69:160–169

    PubMed  CAS  Google Scholar 

  • Dierks T, Barta S, Demisch L, Schmeck K, Englert E, Kewitz A, Maurer K, Poustka F (1999) Intensity dependence of auditory evoked potentials (AEPs) as biological marker for cerebral serotonin levels: effects of tryptophan depletion in healthy subjects. J Psychopharmacol 146:101–107

    Article  CAS  Google Scholar 

  • Dougherty DM, Marsh DM, Mathias CW, Dawes MA, Bradley DM, Morgan CJ, Badawy AA (2007) The effects of alcohol on laboratory-measured impulsivity after l-tryptophan depletion or loading. Psychopharmacology (Berl) 193:137–150

    Article  CAS  Google Scholar 

  • Doumas BT, Biggs HT (1972) Determination of serum albumin. In: Cooper GR (ed) Standard methods in clinical chemistry, vol 7. Academic, NY, pp 175–178

    Google Scholar 

  • Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C (1996) Mood response to acute tryptophan depletion in healthy volunteers: sex differences and temporal stability. Neuropsychopharmacology 15:465–474

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom JD (1983) Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev 63:484–546

    PubMed  CAS  Google Scholar 

  • First MB, Gibbon M, Spitzer RL, Williams JBW, Benjamin L (1997) Structured clinical interview for DSM-IV axis II personality disorders (SCID-II). Biometrics Research Department, New York State Psychiatric Institute, New York

    Google Scholar 

  • First MB, Spitzer R, Gibbon M, Williams JBW (2001) Structured clinical interview for DSM-IV-TR axis I disorders, research version, non-patient edition (SCID-I/NP). Biometrics Research, New York State Psychiatric Institute, New York

    Google Scholar 

  • Gallagher P, Massey AE, Young AH, McAllister-Williams RH (2003) Effects of acute tryptophan depletion on executive function in healthy male volunteers. BMC Psychiatry DOI 10.1186/1471-244X-3-10

  • Gessa GL, Biggio G, Fadda F, Corsini GU, Tagliamonte A (1974) Effect of the oral administration of tryptophan-free amino acid mixtures on serum tryptophan, brain tryptophan and serotonin metabolism. J Neurochem 22:869–870

    Article  PubMed  CAS  Google Scholar 

  • Hughes JH, Dunne F, Young AH (2000) Effects of acute tryptophan depletion on mood and suicidal ideation in bipolar patients symptomatically stable on lithium. Br J Psychiatry 177:447–451

    Article  PubMed  CAS  Google Scholar 

  • Hughes JH, Gallagher P, Young AH (2002) Effects of acute tryptophan depletion on cognitive function in euthymic bipolar patients. Eur Neuropsychopharmacol 12:123–128

    Article  PubMed  CAS  Google Scholar 

  • Hughes JH, Gallagher P, Stewart ME, Matthews D, Kelly TP, Young AH (2003) Effects of acute tryptophan depletion on neuropsychological function. J Psychopharmacol 17:300–309

    Article  PubMed  CAS  Google Scholar 

  • Hussain AM, Mitra AK (2000) Effect of aging on tryptophan hydroxylase in rat brain: implications on serotonin level. Drug Metab Dispos 28:1038–1042

    PubMed  CAS  Google Scholar 

  • Kaye WH, Gendall KA, Fernstrom MH, Fernstrom JD, McConaha CW, Weltzin TE (2000) Effects of acute tryptophan depletion on mood in bulimia nervosa. Biol Psychiatry 47:151–157

    Article  PubMed  CAS  Google Scholar 

  • Klaassen T, Riedel WJ, van Someren A, Deutz NE, Honig A, van Praag HM (1999) Mood effects of 24-hour tryptophan depletion in healthy first-degree relatives of patients with affective disorders. Biol Psychiatry 46:489–497

    Article  PubMed  CAS  Google Scholar 

  • Knott VJ, Howson AL, Perugini M, Raindran AV, Young SN (1999) The effect of acute tryptophan depletion and fenfluramine on quantitative EEG and mood in healthy male subjects. Biol Psychiatry 46:229–238

    Article  PubMed  CAS  Google Scholar 

  • Luciana M, Burgund ED, Berman M, Hanson KL (2001) Effects of tryptophan loading on verbal, spatial and affective working memory functions in healthy adults. J Psychopharmacol 15:219–230

    Article  PubMed  CAS  Google Scholar 

  • Marsh DM, Dougherty DM, Moeller FG, Swann AC, Spiga R (2002) Laboratory-measured aggressive behavior of women: acute tryptophan depletion and augmentation. Neuropsychopharmacology 26:660–671

    Article  PubMed  CAS  Google Scholar 

  • Mikać-Dević D, Stanković H, Bošković K (1973) A method for determination of free fatty acids in serum. Clin Chim Acta 45:55–59

    Article  PubMed  Google Scholar 

  • Moeller FG, Dougherty DM, Swann AC, Collins D, Davis CM, Cherek DR (1996) Tryptophan depletion and aggressive responding in healthy males. Psychopharmacology (Berl) 126:97–103

    Article  CAS  Google Scholar 

  • Moja EA, Stoff DM, Gessa GL, Castoldi D, Assereto R, Tofanetti O (1988) Decrease in plasma tryptophan after tryptophan-free amino acid mixtures in man. Life Sci 42:1551–1556

    Article  PubMed  CAS  Google Scholar 

  • Moja EA, Cipolla P, Castoldi D, Tofanetti O (1989) Dose-response decrease in plasma tryptophan and in brain tryptophan and serotonin after tryptophan-free amino acid mixtures in rats. Life Sci 44:971–976

    Article  PubMed  CAS  Google Scholar 

  • Moja EA, Rocchi E, Benedetti F, Paolillo F, Casalgrandi G, Ponz de Leon M (1991) Decrease in plasma tryptophan after a tryptophan-free amino acid solution. A comparison between cirrhotic and control subjects. Life Sci 48:409–418

    Article  PubMed  CAS  Google Scholar 

  • Moore P, Landolt HP, Seifritz E, Clark C, Bhatti T, Kelsoe J, Rapaport M, Gillin JC (2000) Clinical and physiological consequences of rapid tryptophan depletion. Neuropsychopharmacology 23:601–622

    Article  PubMed  CAS  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology (Berl) 163:42–53

    Article  CAS  Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci 94:5308–5313

    Article  PubMed  CAS  Google Scholar 

  • Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ, Robbins TW, Cowen PJ (1994) Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33:575–588

    Article  PubMed  CAS  Google Scholar 

  • Perugini M, Mahoney C, Ilivitsky V, Young SN, Knott V (2003) Effects of tryptophan depletion on acute smoking abstinence symptoms and acute smoking response. Pharmacol Biochem Behav 74:513–522

    Article  PubMed  CAS  Google Scholar 

  • Pihl RO, Young SN, Harden P, Plotnick S, Chamberlain B, Ervin FR (1995) Acute effect of altered tryptophan levels and alcohol on aggression in normal human males. Psychopharmacology (Berl) 119:353–360

    Article  CAS  Google Scholar 

  • Porter RJ, Lunn BS, Walker LLM, Gray JM, Ballard CG, O’Biran JT (2000) Cognitive deficit induced by acute tryptophan depletion in patients with Alzheimer’s disease. Am J Psychiatry 157:638–640

    Article  PubMed  CAS  Google Scholar 

  • Riedel WJ, Sobczak S, Schmitt JA (2003) Tryptophan modulation and cognition. Adv Exp Med Biol 527:207–213

    PubMed  CAS  Google Scholar 

  • Rubinsztein JS, Rogers RD, Riedel WJ, Mehta MA, Robbins TW, Sahakian BJ (2001) Acute dietary tryptophan depletion impairs maintenance of “affective set” and delayed visual recognition in healthy volunteers. Psychopharmacology (Berl) 154:319–326

    Article  CAS  Google Scholar 

  • Schmitt JAJ, Jorissen BL, Sobczak S, van Boxtel MPJ, Hogervorst E, Deutz NEP, Reidel WJ (2000) Tryptophan depletion impairs memory consolidation but improves focused attention in healthy young volunteers. J Psychopharamacol (Oxford) 14:21–29

    CAS  Google Scholar 

  • Smith SE, Pihl RO, Young SN, Ervin FR (1986) Elevation and reduction of plasma tryptophan and their effects on aggression and perceptual sensitivity in normal males. Aggress Behav 12:393–407

    Article  CAS  Google Scholar 

  • Smith KA, Clifford EM, Hockney RA, Clark DM, Cowen PJ (1997) Effect of tryptophan depletion on mood in male and female volunteers: a pilot study. Hum Psychopharmacol Clin Exp 12:111–117

    Article  CAS  Google Scholar 

  • Sobczak S, Honig A, Nicolson NA, Riedel WJ (2002) Effects of acute tryptophan depletion on mood and cortisol release in first-degree relatives of type I and type II bipolar patients and healthy matched controls. Neuropsychopharmacology 27:834–842

    Article  PubMed  CAS  Google Scholar 

  • Talbot PS, Watson DR, Barrett SL, Cooper SJ (2006) Rapid tryptophan depletion improves decision-making cognition in healthy humans without affecting reversal learning or set shifting. Neuropsychopharmacology 31:1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Van der Does AJ (2001) The effects of tryptophan depletion on mood and psychiatric symptoms. J Affect Disord 64:107–119

    Article  PubMed  Google Scholar 

  • Walderhaug E, Lunde H, Nordvik JE, Landrø NI, Refsum H, Magnusson A (2002) Lowering of serotonin by rapid tryptophan depletion increases impulsiveness in normal individuals. Psychopharmacology (Berl) 164:385–391

    Article  CAS  Google Scholar 

  • Weltzin TE, Fernstrom JD, McConaha C, Kaye WH (1995) Acute tryptophan depletion in Bulimia: Effects on large neutral amino acids. Biol Psychiatry 35:388–397

    Article  Google Scholar 

  • Williams WA, Shoaf SE, Hommer D, Rawlings R, Linnoila M (1999) Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J Neurochem 72:1641–1647

    Article  PubMed  CAS  Google Scholar 

  • Wolfe BE, Metzger ED, Jimerson DC (1995) Comparison of the effects of amino acid mixture and placebo on plasma tryptophan to large neutral amino acid ratio. Life Sci 56:1395–1400

    Article  PubMed  CAS  Google Scholar 

  • Young SN (1993) The use of diet and dietary components in the study of factors controlling affect in humans: a review. J Psychiatry Neurosci 18:235–244

    PubMed  CAS  Google Scholar 

  • Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berl) 87:173–177

    Article  CAS  Google Scholar 

  • Young SN, Ervin FR, Pihl RO, Finn P (1989) Biochemical aspects of tryptophan depletion in primates. Psychopharmacology (Berl) 98:508–511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Dougherty gratefully acknowledges support from the William and Marguerite Wurzbach Distinguished Professorship. We thank Michael A. Dawes, M.D. (Psychiatry Department, The University of Texas Health Science Center at San Antonio), for his review and editorial contributions to this manuscript, as well as Karen Klein, MA, ELS (Research Support Core, Wake Forest University Health Sciences), for her editorial contributions.

While the authors Dougherty, Marsh-Richard, Mathias, and Addicott were affiliated with The University of Texas Health Science Center at Houston during the data collection for this study, Drs. Dougherty, Marsh-Richard, and Mathias have since relocated to The University of Texas Health Science Center at San Antonio. Ms. Addicott has relocated to the Wake Forest University School of Medicine.

Disclosure/conflict of interest statement

There are no conflicts of interest to report for any of the authors of this manuscript. This study was conducted in compliance with the Declaration of Helsinki and the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Dougherty.

Additional information

This research was sponsored by grants from the National Institutes of Health (R01-AA012046, R01-AA014988, and T32-AA07565) and a Wellcome Trust grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougherty, D.M., Marsh-Richard, D.M., Mathias, C.W. et al. Comparison of 50- and 100-g l-tryptophan depletion and loading formulations for altering 5-HT synthesis: pharmacokinetics, side effects, and mood states. Psychopharmacology 198, 431–445 (2008). https://doi.org/10.1007/s00213-008-1163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1163-2

Keywords

Navigation