Skip to main content
Log in

Cotreatment with the kappa opioid agonist U69593 enhances locomotor sensitization to the D2/D3 dopamine agonist quinpirole and alters dopamine D2 receptor and prodynorphin mRNA expression in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The repeated coadministration of the kappa opioid receptor agonist U69593 with the D2/D3 dopamine (DA) agonist quinpirole (QNP) potentiates locomotor sensitization induced by QNP. Behavioral evidence has implicated both pre- and postsynaptic changes as being involved in this augmentation.

Objectives

The objectives of this study were to obtain supporting molecular evidence of pre- and/or postsynaptic alterations in the DA system with U69593/QNP cotreatment and to examine the relationship of such changes to locomotor sensitization.

Materials and methods

Gene expression of D1 and D2 receptors (D1R and D2R), the DA transporter, as well as the endogenous opioid prodynorphin (DYN), in the basal ganglia was examined by in situ hybridization in rats after one or ten drug injections.

Results

After one injection, changes that were specific to U69593/QNP cotreatment were decreased D1R and D2R messenger RNA (mRNA) in the nucleus accumbens (Acb) shell and increased DYN mRNA in the dorsal striatum (STR). After ten injections, U69593/QNP-specific changes were decreased D2R mRNA in substantia nigra (SN) and increased DYN mRNA in STR and Acb core. Only in U69593/QNP rats was the sensitized locomotor performance on injection ten positively correlated with DYN mRNA levels in Acb and STR.

Conclusions

Distinct alterations of D2R and DYN mRNA levels in SN and Acb/STR, respectively, strengthen the evidence implicating pre- and postsynaptic changes in augmented locomotor sensitization to U69593/QNP cotreatment. It is suggested that repeated U69593/QNP cotreatment may augment locomotor sensitization to QNP by activating D1R-expressing DYN neurons and attenuating presynaptic D2R function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acri JB, Thompson AC, Shippenberg T (2001) Modulation of pre- and postsynaptic dopamine D2 receptor function by the selective kappa-opioid receptor agonist U69593. Synapse 39:343–350

    Article  PubMed  CAS  Google Scholar 

  • Adams DH, Hanson GR, Keefe KA (2000) Cocaine and methamphetamine differentially affect opioid peptide mRNA expression in the striatum. J Neurochem 75:2061–2070

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Carey RJ, Damianopoulos EN (2006) Cocaine conditioning and sensitization: the habituation factor. Pharmacol Biochem Behav 84:128–133

    Article  PubMed  CAS  Google Scholar 

  • Carta AR, Gerfen CR, Steiner H (2000) Cocaine effects on gene regulation in the striatum and behavior: increased sensitivity in D3 dopamine receptor-deficient mice. NeuroReport 11:2395–2399

    Article  PubMed  CAS  Google Scholar 

  • Carta AR, Fenu S, Pala P, Tronci E, Morelli M (2003) Selective modifications in GAD67 mRNA levels in striatonigral and striatopallidal pathways correlate to dopamine agonist priming in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 18:2563–2572

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Aloyo VJ, Weiss B (1993) Continuous treatment with the D2 dopamine receptor agonist quinpirole decreases D2 dopamine receptors, D2 dopamine receptor messenger RNA and proenkephalin messenger RNA, and increases mu opioid receptors in mouse striatum. Neuroscience 54:669–680

    Article  PubMed  CAS  Google Scholar 

  • Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, Beuckmann CT, Chemelli RM, Sakurai T, Yanagisawa M, Saper CB, Scammell TE (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21:RC168

    PubMed  CAS  Google Scholar 

  • Collins SL, D’Addario C, Izenwasser S (2001a) Effects of kappa-opioid receptor agonists on long-term cocaine use and dopamine neurotransmission. Eur J Pharmacol 426:25–34

    Article  PubMed  CAS  Google Scholar 

  • Collins SL, Gerdes RM, D’Addario C, Izenwasser S (2001b) Kappa opioid agonists alter dopamine markers and cocaine-stimulated locomotor activity. Behav Pharmacol 12:237–245

    PubMed  CAS  Google Scholar 

  • Couceyro P, Pollock KM, Drews K, Douglass J (1994) Cocaine differentially regulates activator protein-1 mRNA levels and DNA-binding complexes in the rat striatum and cerebellum. Mol Pharmacol 46:667–676

    PubMed  CAS  Google Scholar 

  • Culver KE, Rosenfeld JM, Szechtman H (2000) A switch mechanism between locomotion and mouthing implicated in sensitization to quinpirole in rats. Psychopharmacology (Berl) 151:202-210

    Article  CAS  Google Scholar 

  • Daunais JB, Mcginty JF (1994) Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs. Synapse 18:35–45

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    PubMed  Google Scholar 

  • Dvorkin A, Perreault ML, Szechtman H (2006) Development and temporal organization of compulsive checking induced by repeated injections of the dopamine agonist quinpirole in an animal model of obsessive–compulsive disorder. Behav Brain Res 169:303–311

    Article  PubMed  CAS  Google Scholar 

  • Eilam D, Szechtman H (2005) Psychostimulant-induced behavior as an animal model of obsessive–compulsive disorder: an ethological approach to the form of compulsive rituals. CNS Spectr 10:191–202

    PubMed  Google Scholar 

  • Engber TM, Boldry RC, Kuo S, Chase TN (1992) Dopaminergic modulation of striatal neuropeptides: differential effects of D1 and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin. Brain Res 581:261–268

    Article  PubMed  CAS  Google Scholar 

  • Foster JA, Quan N, Stern EL, Kristensson K, Herkenham M (2002) Induced neuronal expression of class I major histocompatibility complex mRNA in acute and chronic inflammation models. J Neuroimmunol 131:83–91

    Article  PubMed  CAS  Google Scholar 

  • Fuentealba JA, Gysling K, Magendzo K, Andres ME (2006) Repeated administration of the selective kappa-opioid receptor agonist U-69593 increases stimulated dopamine extracellular levels in the rat nucleus accumbens. J Neurosci Res 84:450–459

    Article  PubMed  CAS  Google Scholar 

  • Georges F, Stinus L, Bloch B, Le Moine C (1999) Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur J Neurosci 11:481–490

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Gray AM, Rawls SM, Shippenberg TS, Mcginty JF (1999) The kappa-opioid agonist, U-69593, decreases acute amphetamine-evoked behaviors and calcium-dependent dialysate levels of dopamine and glutamate in the ventral striatum. J Neurochem 73:1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Hara Y, Yakovleva T, Bakalkin G, Pickel VM (2006) Dopamine D1 receptors have subcellular distributions conducive to interactions with prodynorphin in the rat nucleus accumbens shell. Synapse 60:1–19

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA, Thompson AC, Shippenberg TS (1996) Role of extracellular dopamine in the initiation and long-term expression of behavioral sensitization to cocaine. J Pharmacol Exp Ther 278:490–502

    PubMed  CAS  Google Scholar 

  • Henry DJ, White FJ (1991) Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J Pharmacol Exp Ther 258:882–890

    PubMed  CAS  Google Scholar 

  • Hermann H, Marsicano G, Lutz B (2002) Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience 109:451–460

    Article  PubMed  CAS  Google Scholar 

  • Hope BT (1998) Cocaine and the AP-1 transcription factor complex. Ann N Y Acad Sci 844:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hope B, Kosofsky B, Hyman SE, Nestler EJ (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci USA 89:5764–5768

    Article  PubMed  CAS  Google Scholar 

  • Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, Duman RS, Nestler EJ (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Hu XT, Koeltzow TE, Cooper DC, Robertson GS, White FJ, Vezina P (2002) Repeated ventral tegmental area amphetamine administration alters dopamine D1 receptor signaling in the nucleus accumbens. Synapse 45:159–170

    Article  PubMed  CAS  Google Scholar 

  • Hurd YL, Herkenham M (1992) Influence of a single injection of cocaine, amphetamine or GBR 12909 on mRNA expression of striatal neuropeptides. Brain Res Mol Brain Res 16:97–104

    Article  PubMed  CAS  Google Scholar 

  • Hurd YL, Brown EE, Finlay JM, Fibiger HC, Gerfen CR (1992) Cocaine self-administration differentially alters mRNA expression of striatal peptides. Brain Res Mol Brain Res 13:165–170

    Article  PubMed  CAS  Google Scholar 

  • Izawa R, Jaber M, Deroche-Gamonet V, Sillaber I, Kellendonk C, Le Moal M, Tronche F, Piazza PV (2006) Gene expression regulation following behavioral sensitization to cocaine in transgenic mice lacking the glucocorticoid receptor in the brain. Neuroscience 137:915–924

    Article  PubMed  CAS  Google Scholar 

  • Izenwasser S, Acri JB, Kunko PM, Shippenberg T (1998) Repeated treatment with the selective kappa opioid agonist U-69593 produces a marked depletion of dopamine D2 receptors. Synapse 30:275–283

    Article  PubMed  CAS  Google Scholar 

  • Jiang HK, Wang JY (1991) The effects of dopamine D-1 and D-2 receptor subtype agonists on nigrostriatal opioid dynorphin and enkephalin immunostaining in 6-hydroxydopamine lesioned rats. Chin J Physiol 34:413–425

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    Article  PubMed  CAS  Google Scholar 

  • Keefe KA, Gerfen CR (1995) D1–D2 dopamine receptor synergy in striatum: effects of intrastriatal infusions of dopamine agonists and antagonists on immediate early gene expression. Neuroscience 66:903–913

    Article  PubMed  CAS  Google Scholar 

  • Kelland MD, Freeman AS, Lewitt PA, Chiodo LA (1990) Effects of (+)-4-propyl-9-hydroxynaphthoxazine on midbrain dopamine neurons: an electrophysiological study. J Pharmacol Exp Ther 255:276–284

    PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    Article  PubMed  CAS  Google Scholar 

  • Maisonneuve IM, Archer S, Glick SD (1994) U50,488, a kappa opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats. Neurosci Lett 181:57–60

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Fox CA, Meng F, Akil H, Watson SJ (1994) Kappa 1 receptor mRNA distribution in the rat CNS: comparison to kappa receptor binding and prodynorphin mRNA. Mol Cell Neurosci 5:124–144

    Article  PubMed  CAS  Google Scholar 

  • Mathieu-Kia AM, Besson MJ (1998) Repeated administration of cocaine, nicotine and ethanol: effects on preprodynorphin, preprotachykinin A and preproenkephalin mRNA expression in the dorsal and the ventral striatum of the rat. Brain Res Mol Brain Res 54:141–151

    Article  PubMed  CAS  Google Scholar 

  • Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci USA 90:9954–9958

    Article  PubMed  CAS  Google Scholar 

  • Milanovic D, Pesic V, Rakic L, Kanazir S, Ruzdijic S (2006) Enhancement of AP-1 DNA-binding activity during amphetamine- and phencyclidine-mediated behaviour in rats. Neuropharmacology 50:924–933

    Article  PubMed  CAS  Google Scholar 

  • Minami M, Hosoi Y, Toya T, Katao Y, Maekawa K, Katsumata S, Yabuuchi K, Onogi T, Satoh M (1993) In situ hybridization study of kappa-opioid receptor mRNA in the rat brain. Neurosci Lett 162:161–164

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TV, Kosofsky BE, Birnbaum R, Cohen BM, Hyman SE (1992) Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci USA 89:4270–4274

    Article  PubMed  CAS  Google Scholar 

  • Perreault ML, Graham D, Bisnaire L, Simms J, Hayton S, Szechtman H (2006) Kappa-opioid agonist U69593 potentiates locomotor sensitization to the D2/D3 agonist quinpirole: pre- and postsynaptic mechanisms. Neuropsychopharmacology 31:1967–1981

    Article  PubMed  CAS  Google Scholar 

  • Przewlocka B, Lason W (1995) Adaptive changes in the proenkephalin and D2 dopamine receptor mRNA expression after chronic cocaine in the nucleus accumbens and striatum of the rat. Eur Neuropsychopharmacol 5:465–469

    Article  PubMed  CAS  Google Scholar 

  • Przewlocka B, Turchan J, Lason W, Przewlocki R (1996) The effect of single and repeated morphine administration on the prodynorphin system activity in the nucleus accumbens and striatum of the rat. Neuroscience 70:749–754

    Article  PubMed  CAS  Google Scholar 

  • Radwanska K, Valjent E, Trzaskos J, Caboche J, Kaczmarek L (2006) Regulation of cocaine-induced activator protein 1 transcription factors by the extracellular signal-regulated kinase pathway. Neuroscience 137:253–264

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Segal DS, Kuczenski R (1992) Repeated cocaine administration induces behavioral sensitization and corresponding decreased extracellular dopamine responses in caudate and accumbens. Brain Res 577:351–355

    Article  PubMed  CAS  Google Scholar 

  • Segal DS, Schuckit MA (1983) Animal models of stimulant-induced psychosis. In: Creese I (ed) Stimulants: neurochemical, behavioral and clinical perspectives. Raven Press, New York, pp 131–167

    Google Scholar 

  • Shilling PD, Kelsoe JR, Segal DS (1997) Dopamine transporter mRNA is up-regulated in the substantia nigra and the ventral tegmental area of amphetamine-sensitized rats. Neurosci Lett 236:131–134

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Chefer VI, Zapata A, Heidbreder CA (2001) Modulation of the behavioral and neurochemical effects of psychostimulants by kappa-opioid receptor systems. Ann N Y Acad Sci 937:50–73

    Article  PubMed  CAS  Google Scholar 

  • Skirboll LR, Grace AA, Bunney BS (1979) Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Mcginty JF (1994) Acute amphetamine or methamphetamine alters opioid peptide mRNA expression in rat striatum. Brain Res Mol Brain Res 21:359–362

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 89:2046–2050

    Article  PubMed  CAS  Google Scholar 

  • Spangler R, Goddard NL, Avena NM, Hoebel BG, Leibowitz SF (2003) Elevated D3 dopamine receptor mRNA in dopaminergic and dopaminoceptive regions of the rat brain in response to morphine. Brain Res Mol Brain Res 111:74–83

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Gerfen CR (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J Neurosci 13:5066–5081

    PubMed  CAS  Google Scholar 

  • Steiner H, Gerfen CR (1995) Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. J Comp Neurol 353:200–212

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Gerfen CR (1996) Dynorphin regulates D1 dopamine receptor-mediated responses in the striatum: relative contributions of pre- and postsynaptic mechanisms in dorsal and ventral striatum demonstrated by altered immediate-early gene induction. J Comp Neurol 376:530–541

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123:60–76

    Article  PubMed  CAS  Google Scholar 

  • Svingos AL, Chavkin C, Colago EE, Pickel VM (2001) Major coexpression of kappa-opioid receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse 42:185–192

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Woody E (2004) Obsessive–compulsive disorder as a disturbance of security motivation. Psychol Rev 111:111–127

    Article  PubMed  Google Scholar 

  • Szechtman H, Sulis W, Eilam D (1998) Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive–compulsive disorder (OCD). Behav Neurosci 112:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Dai H, Mustafa S, Einat H, Sullivan RM (1994a) Effects of dose and interdose interval on locomotor sensitization to the dopamine agonist quinpirole. Pharmacol Biochem Behav 48:921–928

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Talangbayan H, Canaran G, Dai H, Eilam D (1994b) Dynamics of behavioral sensitization induced by the dopamine agonist quinpirole and a proposed central energy control mechanisms [published erratum appears in Psychopharmacology (Berl) 1994 Sep; 116(1):124]. Psychopharmacology 115:95–104

    Google Scholar 

  • Takeuchi Y, Fukunaga K, Miyamoto E (2002) Activation of nuclear Ca(2+)/calmodulin-dependent protein kinase II and brain-derived neurotrophic factor gene expression by stimulation of dopamine D2 receptor in transfected NG108-15 cells. J Neurochem 82:316–328

    Article  PubMed  CAS  Google Scholar 

  • Thompson AC, Zapata A, Justice JB Jr, Vaughan RA, Sharpe LG, Shippenberg TS (2000) Kappa-opioid receptor activation modifies dopamine uptake in the nucleus accumbens and opposes the effects of cocaine. J Neurosci 20:9333–9340

    PubMed  CAS  Google Scholar 

  • Tizabi Y, Louis VA, Taylor CT, Waxman D, Culver KE, Szechtman H (2002) Effect of nicotine on quinpirole-induced checking behavior in rats: implications for obsessive–compulsive disorder. Biol Psychiatry 51:164–171

    Article  PubMed  CAS  Google Scholar 

  • Turchan J, Lason W, Budziszewska B, Przewlocka B (1997) Effects of single and repeated morphine administration on the prodynorphin, proenkephalin and dopamine D2 receptor gene expression in the mouse brain. Neuropeptides 31:24–28

    Article  PubMed  CAS  Google Scholar 

  • Turchan J, Przewlocka B, Lason W, Przewlocki R (1998) Effects of repeated psychostimulant administration on the prodynorphin system activity and kappa opioid receptor density in the rat brain. Neuroscience 85:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Turgeon SM, Pollack AE, Fink JS (1997) Enhanced CREB phosphorylation and changes in c-Fos and FRA expression in striatum accompany amphetamine sensitization. Brain Res 749:120–126

    Article  PubMed  CAS  Google Scholar 

  • Tzaferis JA, Mcginty JF (2001) Kappa opioid receptor stimulation decreases amphetamine-induced behavior and neuropeptide mRNA expression in the striatum. Brain Res Mol Brain Res 93:27–35

    Article  PubMed  CAS  Google Scholar 

  • Wang JQ, Mcginty JF (1995a) Alterations in striatal zif/268, preprodynorphin and preproenkephalin mRNA expression induced by repeated amphetamine administration in rats. Brain Res 673:262–274

    Article  PubMed  CAS  Google Scholar 

  • Wang JQ, Mcginty JF (1995b) Dose-dependent alteration in zif/268 and preprodynorphin mRNA expression induced by amphetamine or methamphetamine in rat forebrain. J Pharmacol Exp Ther 273:909–917

    PubMed  CAS  Google Scholar 

  • Wang JQ, Smith AJ, Mcginty JF (1995) A single injection of amphetamine or methamphetamine induces dynamic alterations in c-fos, zif/268 and preprodynorphin messenger RNA expression in rat forebrain. Neuroscience 68:83–95

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Miller JC, Friedhoff AJ (1997) Differential regulation of D2 receptor gene expression by transcription factor AP-1 in cultured cells. J Neurosci Res 50:23–31

    Article  PubMed  CAS  Google Scholar 

  • Werme M, Thoren P, Olson L, Brene S (2000) Running and cocaine both upregulate dynorphin mRNA in medial caudate putamen. Eur J Neurosci 12:2967–2974

    Article  PubMed  CAS  Google Scholar 

  • White FJ, Wang RY (1986) Electrophysiological evidence for the existence of both D-1 and D-2 dopamine receptors in the rat nucleus accumbens. J Neurosci 6:274–280

    PubMed  CAS  Google Scholar 

  • Whitfield HJ, Jr., Brady LS, Smith MA, Mamalaki E, Fox RJ, Herkenham M (1990) Optimization of cRNA probe in situ hybridization methodology for localization of glucocorticoid receptor mRNA in rat brain: a detailed protocol. Cell Mol Neurobiol 10:145–157

    Article  PubMed  CAS  Google Scholar 

  • Wolf ME, White FJ, Hu X-T (1993) Behavioral sensitization to MK-801 (dizocilpine): neurochemical and electrophysiological correlates in the mesoaccumbens dopamine system. Behav Pharmacol 4:429–442

    Article  PubMed  CAS  Google Scholar 

  • Yajima S, Lee SH, Minowa T, Mouradian MM (1998) Sp family transcription factors regulate expression of rat D2 dopamine receptor gene. DNA Cell Biol 17:471–479

    Article  PubMed  CAS  Google Scholar 

  • You ZB, Herrera-Marschitz M, Nylander I, Goiny M, O’Connor WT, Ungerstedt U, Terenius L (1994) The striatonigral dynorphin pathway of the rat studied with in vivo microdialysis-II. Effects of dopamine D1 and D2 receptor agonists. Neuroscience 63:427–434

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Zhang L, Tang Y, Zhang Q, Lou D, Sharp FR, Zhang J, Xu M (2005) Repeated cocaine administration induces gene expression changes through the dopamine D1 receptors. Neuropsychopharmacology 30:1443–1454

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by an operating grant (MOP-64424) from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa L. Perreault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perreault, M.L., Graham, D., Scattolon, S. et al. Cotreatment with the kappa opioid agonist U69593 enhances locomotor sensitization to the D2/D3 dopamine agonist quinpirole and alters dopamine D2 receptor and prodynorphin mRNA expression in rats. Psychopharmacology 194, 485–496 (2007). https://doi.org/10.1007/s00213-007-0855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0855-3

Keywords

Navigation