Skip to main content

Advertisement

Log in

A pharmacological analysis of stimulant-induced increases in smoking

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Stimulants increase tobacco smoking in healthy adults under controlled laboratory conditions. The mechanisms that mediate stimulant-induced increases in smoking are not known.

Objective

The purpose of the present experiment was to characterize the pharmacological specificity of stimulant-induced increases in smoking. We tested the effects of methylphenidate and atomoxetine on smoking behavior. Atomoxetine is a norepinephrine transport inhibitor that does not increase dopamine levels in the nucleus accumbens or striatum. If stimulant-induced increases in smoking result from an additive or synergistic effect of these drugs and nicotine on dopamine levels in the nucleus accumbens or striatum, methylphenidate but not atomoxetine should increase smoking.

Materials and methods

Doses of methylphenidate (10, 20, and 40 mg) and atomoxetine (20, 40, and 80 mg) were tested once while placebo was tested twice in 12 cigarette smokers. One hour after ingesting drug, participants smoked ad libitum for 4 h. Measures of smoking included total cigarettes, total puffs, and carbon monoxide levels. Snacks and decaffeinated drinks were available ad libitum, and food intake was calculated.

Results

Methylphenidate but not atomoxetine dose-dependently increased the number of cigarettes, puffs, and carbon monoxide levels. Methylphenidate and atomoxetine decreased food intake.

Conclusions

The results of this experiment are consistent with the notion that stimulant-induced increases in smoking may result from an additive or synergistic effect of these drugs and nicotine on dopamine levels in the nucleus accumbens or striatum. Additional research is needed to more fully understand the pharmacological mechanisms that mediate the relationship between stimulant use and smoking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADHD:

Attention Deficit Hyperactivity Disorder

ANOVA:

Analysis of variance

THC:

Tetrahydrocannibinol

DVD:

Digital-video display

CO:

Carbon monoxide

References

  • Abreu ME, Bigelow GE, Fleisher L, Walsh SL (2001) Effect of intravenous injection speed on responses to cocaine and hydromorphone in humans. Psychopharmacology 154:76–84

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20:1–25

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Wilens T, Mick E, Spencer T, Faraone S (1999) Pharmacotherapy of attention-deficit/hyperactivity disorder reduces risk for substance use disorder. Pediatrics 104(2):20–25

    Article  Google Scholar 

  • Bray GA (1993) Use and abuse of appetite-suppressant drugs in the treatment of obesity. Ann Intern Med 7(2):707–713

    Google Scholar 

  • Budney AJ, Higgins ST, Hughes JR, Bickel WK (1993) Nicotine and caffeine use in cocaine-dependent individuals. J Subst Abuse 5(2):117–130

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    Article  PubMed  CAS  Google Scholar 

  • Carpenter LL, Milosavljevic N, Schecter JM, Tyrka AR, Price LH (2005) Augmentation with open-label atomoxetine for partial or nonresponse to antidepressants. J Clin Psychiatry 66(10):1234–1238

    Article  PubMed  CAS  Google Scholar 

  • Center for Disease Control (CDC) (2003) Annual smoking-attributable mortality, years of potential life lost, and economic costs—United States, 1995–1999. MMWR Weekly 51(14):300–303

    Google Scholar 

  • Chait LD, Griffiths RR (1983) Effects of caffeine on cigarette smoking and subjective response. Clin Pharmacol Ther 34:612–622

    Article  PubMed  CAS  Google Scholar 

  • Christman AK, Fermo JD, Markowitz JS (2004) Atomoxetine, a novel treatment for Attention-Deficit-Hyperactivity Disorder. Pharmacotherapy 24(8):1020–1036

    Article  PubMed  CAS  Google Scholar 

  • Cousins MS, Stamat HM, de Wit H (2001) Acute doses of d-amphetamine and bupropion increase cigarette smoking. Psychopharmacology (Berl) 157:243–253

    Article  CAS  Google Scholar 

  • Feinberg SS (2004) Combining stimulants with monoamine oxidase inhibitors: a review of uses and one possible additional indication. J Clin Psychiatry 65(11):1520–1524

    PubMed  CAS  Google Scholar 

  • Gadde KM, Yonish GM, Wagner HR, Foust MS, Allison DB (2006) Atomoxetine for weight reduction in obese women: a preliminary randomized controlled trial. Int J Obes 30:1138–1142

    Article  CAS  Google Scholar 

  • Gehlert DR, Schober DA, Hemrick-Luecke SK, Krushinski J, Howbert JJ, Robertson DW, Fuller RW, Wong DT (1995) Novel halogenated analogs of tomoxetine that are potent and selective inhibitors of norepinephrine uptake in brain. Neurochem Int 26:47–52

    Article  PubMed  CAS  Google Scholar 

  • Gerasimov MR, Franceschi M, Volkow ND, Rice O, Schiffer WK, Dewey SL (2000) Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 38:432–437

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb S (2001) Methylphenidate works by increasing dopamine levels. BMJ 322:259

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, Higashi H, Nairn AC, Greengard P, Nishi A (2004) Differential regulation of dopamine D1 and D2 signaling by nicotine in neostriatal neurons. J Neurochem 90:1094–1103

    Article  PubMed  CAS  Google Scholar 

  • Heil SH, Holmes HW, Bickel WK, Higgins ST, Badger GJ, Laws HF, Faries DE (2002) Comparison of the subjective, physiological and psychomotor effects of methylphenidate and atomoxetine in light drug users. Drug Alcohol Depend 67:149–156

    Article  PubMed  CAS  Google Scholar 

  • Henningfield JE, Griffiths RR (1981) Cigarette smoking and subjective response: effects of d-amphetamine. Clin Pharmacol Ther 30:497–505

    Article  PubMed  CAS  Google Scholar 

  • Henningfield JE, Lukas SE, Bigelow GE (1986) Human studies of drugs as reinforcers. In: Goldberg, Stolerman (eds) Behavioral analysis of drug dependence (Chapter 3). Academic, Orlando, FL

    Google Scholar 

  • Henningfield JE, Fant RV, Buchhalter AR, Stitzer ML (2005) Pharmacotherapy for nicotine dependence. CA Cancer J Clin 55(5):281–299

    Article  PubMed  Google Scholar 

  • Huston-Lyons D, Sarkar M, Kornetsky C (1993) Nicotine and brain-stimulation reward: interactions with morphine, amphetamine and pimozide. Pharmacol Biochem Behav 46:453–457

    Article  PubMed  CAS  Google Scholar 

  • Kollins SH, Rush CR, Pazzaglia PJ, Ali JA (1998) Comparison of acute behavioral effects of sustained-release and immediate-release methylphenidate. Exp Clin Psychopharmacol 6(4):367–374

    Article  PubMed  CAS  Google Scholar 

  • Lage M, Hwang P (2004) Effect of methylphenidate formulation for attention deficit hyperactivity on patterns and outcomes of treatment. J Child Adolesc Psychopharmacol 12(4):575–581

    Article  Google Scholar 

  • Lambert NM (2002) Stimulant treatment as a risk factor for nicotine use and substance abuse. In: Jensen PS, Cooper JR (eds) Attention deficit hyperactivity disorder: state of the science—best practices (Chapter 18). Civic Research Institute, Kingston, NJ

    Google Scholar 

  • Lambert NM, Hartsough CS (1998) Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J Learn Disabil 31(6):533–544

    PubMed  CAS  Google Scholar 

  • Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH (2000) Smoking and mental illness: a population-based prevalence study. JAMA 284:2606–2610

    Article  PubMed  CAS  Google Scholar 

  • Leddy JJ, Epstein LH, Jaroni JL, Roemmich JN, Paluch RA, Goldfield GS, Lerman C (2004) Influence of methylphenidate on eating in obese men. Obes Res 12:224–232

    Article  PubMed  CAS  Google Scholar 

  • Lile JA, Stoops WW, Durell TM, Glaser PEA, Rush CR (2006) Discriminative-stimulus, self-reported, performance, and cardiovascular effects of atomoxetine in methylphenidate-trained humans. Exp Clin Psychopharmacol 14(2):136–147

    Article  PubMed  CAS  Google Scholar 

  • Loney J, Kramer J, Salisbury H (2002) Medicated versus unmedicated ADHD children–adult involvement with legal and illegal drugs. In: Jensen PS, Cooper JR (eds) Attention defecit hyperactivity disorder: state of the science—best practices (Chapter 17). Civic Research Institute, Kingston, NJ

    Google Scholar 

  • Mach RH, Nader MA, Ehrenkaufer RL, Line SW, Smith CR, Gage HD, Morton TE (1997) Use of positron emission tomography to study the dynamics of psychostimulant release. Pharmacol Biochem Behav 57(3):477–486

    Article  PubMed  CAS  Google Scholar 

  • Michelson D, Allen AJ, Busner J, Casat C, Dunn D, Kratochvil C, Newcorn J, Sallee FR, Sangal RB, Saylor K, West S, Kelsey D, Wernicke J, Trapp NJ, Harder D (2002) Once-daily atomoxetine treatment for children and adolescents with attention deficit hyperactivity disorder: a randomized, placebo-controlled study. Am J Psychiatry 159:1896–1901

    Article  PubMed  Google Scholar 

  • Michelson D, Adler L, Spencer T, Reimherr FW, West SA, Allen AJ, Kelsey D, Wernicke J, Dietrich A, Milton D (2003) Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol Psychiatry 53:112–120

    Article  PubMed  CAS  Google Scholar 

  • Mignot E, Nishino S (2005) Emerging therapies in narcolepsy–cataplexy. Sleep 28(6):754–763

    PubMed  Google Scholar 

  • Nisoli E, Carruba MO (2000) An assessment of the safety and efficacy of sibutramine, an anti-obesity drug with a novel mechanism of action. Obes Rev 1(2):127–139

    Article  PubMed  CAS  Google Scholar 

  • Oliveto AH, Bickel WK, Hughes JR, Shea PJ, Higgins ST, Fenwick JW (1992) Caffeine drug discrimination in humans: acquisition, specificity and correlation with self-reports. J Pharmacol Exp Ther 261:885–894

    PubMed  CAS  Google Scholar 

  • Reeves G, Schweitzer J (2004) Pharmacological management of attention-deficit hyperactivity disorder. Expert Opin Pharmacother 5:1313–1320

    Article  PubMed  CAS  Google Scholar 

  • Rush CR, Essman WD, Simpson CA, Baker RW (2001) Reinforcing and subject-rated effects of methylphenidate and d-amphetamine in non-drug-abusing volunteers. J Clin Psychopharmacol 21:273–286

    Article  PubMed  CAS  Google Scholar 

  • Rush CR, Higgins ST, Vansickel AR, Stoops WW, Lile JA, Glaser PEA (2005) Methylphenidate increases cigarette smoking. Psychopharmacology 181:781–789

    Article  PubMed  CAS  Google Scholar 

  • Schuster CR, Lucchesi BR, Emley GS (1979) The effects of d-amphetamine, meprobamate, and lobeline on the cigarette smoking behavior of normal human subjects. NIDA Res Monogr 23:91–99

    PubMed  CAS  Google Scholar 

  • Schwartz JR (2004) Pharmacological management of daytime sleepiness. J Clin Psychiatry 65(S16):46–49

    PubMed  Google Scholar 

  • Sigmon SC, Tidey JW, Badger GJ, Higgins ST (2003) Acute effects of d-amphetamine on progressive-ratio performance maintained by cigarette smoking and money. Psychopharmacology 167:393–402

    PubMed  CAS  Google Scholar 

  • Simpson D, Plosker GL (2004) Atomoxetine: a review of its use in adults with attention deficit hyperactivity disorder. Drugs 64:205–222

    Article  PubMed  CAS  Google Scholar 

  • Spencer T, Biederman J, Wilens T (2004) Stimulant treatment of adult attention-deficit/hyperactivity disorder. Psychiatr Clin North Am 27:361–372

    Article  PubMed  Google Scholar 

  • Stoops WW, Lile JA, Fillmore MT, Glaser PEA, Rush CR (2005a) Reinforcing effects of methylphenidate: Influence of dose and environmental demands following drug administration. Psychopharmacology 177:349–355

    Article  PubMed  CAS  Google Scholar 

  • Stoops WW, Lile JA, Glaser PEA, Rush CR (2005b) Discriminative-stimulus and self-reported effects of methylphenidate, d-amphetamine, and triazolam in methylphenidate-trained humans. Exp Clin Psychopharmacol 13:56–64

    Article  PubMed  CAS  Google Scholar 

  • Substance Abuse and Mental Health Services Administration (2006) Results from the 2005 National Survey on Drug Use and Health: national findings. Office of Applied Studies, NSDUH Series H-30, DHHS Publication no. SMA 06-4194, Rockville, MD

  • Tidey JW, O’Neill SC, Higgins ST (2000) d-Amphetamine increases choice of cigarette smoking over monetary reinforcement. Psychopharmacology (Berl) 153:85–92

    Article  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Ding YS (2005) Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1410–1415

    Article  PubMed  CAS  Google Scholar 

  • Wee S, Woolverton WL (2004) Evaluation of the reinforcing effects of atomoxetine in monkeys: a comparison to methylphenidate and desipramine. Drug Alcohol Depend 75(3):271–276

    Article  PubMed  CAS  Google Scholar 

  • Weigle DA (2003) Pharmacological treatment of obesity: past, present, and future. J Clin Endocrinol Metab 88(6):2462–2469

    Article  PubMed  CAS  Google Scholar 

  • Wilens TE, Newcorn JH, Kratochvil CJ, Gao H, Thomason CK, Rogers AK, Feldman PD, Levine LR (2006) Long-term atomoxetine treatment in adolescents with attention-deficit/hyperactivity disorder. J Peds 149:112–119

    Article  CAS  Google Scholar 

  • Wooters TE, Neugebauer NM, Rush CR, Bardo MT (2007) Methylphenidate enhances the abuse-related effects of nicotine in rats: intravenous self-administration, drug-discrimination and locomotor sensitization. Neuropsychopharmacology (under review)

Download references

Acknowledgments

The authors wish to thank Frances P. Wagner, R.N. for her expert nursing assistance, Michelle Gray, B.A., John Blackburn, B.S., Derek Roe, B.A., and Karolyn Hays for their technical assistance. The National Institute on Drug Abuse (NIDA) Grants DA 012665 and DA 010325 (CRR) as well as National Institute of Health National Research Service Award NIDA DA 07304 (Thomas F. Garrity) supported this research. The data for this experiment were gathered as partial fulfillment of the requirements for the degree of Master of Arts in Psychology in the College of Arts and Sciences at the University of Kentucky (Vansickel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Rush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vansickel, A.R., Stoops, W.W., Glaser, P.E.A. et al. A pharmacological analysis of stimulant-induced increases in smoking. Psychopharmacology 193, 305–313 (2007). https://doi.org/10.1007/s00213-007-0786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0786-z

Keywords

Navigation