Skip to main content
Log in

Effects of pharmacological doses of 2-deoxyglucose on plasma catecholamines and glucose levels in patients with schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Several lines of evidence suggest that the pathophysiology of schizophrenia may be associated with altered noradrenergic and glucoregulatory function.

Objective

The aim of this study was to investigate these alterations during a perturbed homeostatic state.

Methods

Fifteen patients with schizophrenia and 13 healthy individuals were given a glucose deprivation challenge through administration of pharmacological doses of 2-deoxyglucose (2DG; 40 mg/kg), and their plasma was assayed over the next 60 min for concentrations of norepinephrine (NE), the intraneuronal NE metabolite dihydroxyphenylglycol (DHPG), epinephrine and glucose.

Results

2DG induced significant increases in plasma NE, epinephrine and glucose levels in both groups with significantly greater NE and glucose increments in patients than in controls. For DHPG, 2DG produced increases in patients and decreases in the control subjects. NE responses correlated positively and significantly with the DHPG and glucose responses in schizophrenics, but not in controls.

Conclusions

These findings suggest that patients with schizophrenia have exaggerated NE and glucose responses to an acute metabolic perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albus M, Ackenheil M, Engel RR, Muller F (1982) Situational reactivity of autonomic functions in schizophrenic patients. Psychiatry Res 6:361–370

    Article  CAS  PubMed  Google Scholar 

  • Banerji MA, Lebowitz J, Chaiken RL, Gordon D, Kral JG, Lebovitz HE (1997) Relationship of visceral adipose tissue and glucose disposal is independent of sex in black NIDDM subjects. Am J Physiol 273:E425–E432

    CAS  PubMed  Google Scholar 

  • Baron AD, Brechtel G, Johnson A, Fineberg N, Henry DP, Steinberg HO (1994) Interactions between insulin and norepinephrine on blood pressure and insulin sensitivity. Studies in lean and obese men. J Clin Invest 93:2453–2462

    CAS  PubMed  Google Scholar 

  • Bird ED, Spokes EG, Iversen LL (1979a) Brain norepinephrine and dopamine in schizophrenia. Science 204:93–94

    CAS  PubMed  Google Scholar 

  • Bird ED, Spokes EG, Iversen LL (1979b) Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia. Brain 102:347–360

    CAS  PubMed  Google Scholar 

  • Breier A (1989) A.E. Bennett award paper. Experimental approaches to human stress research: assessment of neurobiological mechanisms of stress in volunteers and psychiatric patients. Biol Psychiatry 26:438–462

    Article  CAS  PubMed  Google Scholar 

  • Breier A, Wolkowitz OM, Roy A, Potter WZ, Pickar D (1990) Plasma norepinephrine in chronic schizophrenia. Am J Psychiatry 147:1467–1470

    CAS  PubMed  Google Scholar 

  • Breier A, Davis O, Buchanan R, Listwak SJ, Holmes C, Pickar D, Goldstein DS (1992) Effects of alprazolam on pituitary-adrenal and catecholaminergic responses to metabolic stress in humans. Biol Psychiatry 32:880–890

    Article  CAS  PubMed  Google Scholar 

  • Bridge TP, Kleinman JE, Karoum F, Wyatt RJ (1985) Postmortem central catecholamines and antemortem cognitive impairment in elderly schizophrenics and controls. Neuropsychobiology 14:57–61

    CAS  PubMed  Google Scholar 

  • Brodows RG, Pi S, Campbell RG (1975) Sympathetic control of hepatic glycogenolysis during glucopenia in man. Metabolism 24:617–624

    CAS  PubMed  Google Scholar 

  • Brown S, Birtwistle J, Roe L, Thompson C (1999) The unhealthy lifestyle of people with schizophrenia. Psychol Med 29:697-701

    Article  PubMed  Google Scholar 

  • Chang PC, Krogt JA van der, Vermeij P, Brummelen P van (1986) Norepinephrine removal and release in the forearm of healthy subjects. Hypertension 8:801–809

    CAS  PubMed  Google Scholar 

  • Crow TJ, Baker HF, Cross AJ, Joseph MH, Lofthouse R, Longden A, Owen F, Riley GJ, Glover V, Killpack WS (1979) Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. Br J Psychiatry 134:249–256

    CAS  PubMed  Google Scholar 

  • Davis SN, Cherrington AD, Goldstein RE, Jacobs J, Price L (1993a) Effects of insulin on the counterregulatory response to equivalent hypoglycemia in normal females. Am J Physiol 265:E680–E689

    CAS  PubMed  Google Scholar 

  • Davis SN, Goldstein RE, Jacobs J, Price L, Wolfe R, Cherrington AD (1993b) The effects of differing insulin levels on the hormonal and metabolic response to equivalent hypoglycemia in normal humans. Diabetes 42:263–272

    CAS  PubMed  Google Scholar 

  • Dixon L, Weiden P, Delahanty J, Goldberg R, Postrado L, Lucksted A, Lehman A (2000) Prevalence and correlates of diabetes in national schizophrenia samples. Schizophr Bull 26:903–912

    CAS  PubMed  Google Scholar 

  • Dwyer DS, Bradley RJ, Kablinger AS, Freeman AM, 3rd (2001) Glucose metabolism in relation to schizophrenia and antipsychotic drug treatment. Ann Clin Psychiatry 13:103–113

    Article  CAS  PubMed  Google Scholar 

  • Egan MF, Hyde TM (2000) Schizophrenia: Neurobiology. In: Kaplan and Sadock (eds) Comprehensive textbook of psychiatry. Lippincott, Williams & Wilkins, Philadelphia

  • Eisenhofer G, Goldstein DS, Stull R, Keiser HR, Sunderland T, Murphy DL, Kopin IJ (1986) Simultaneous liquid-chromatographic determination of 3,4-dihydroxyphenylglycol, catecholamines, and 3,4-dihydroxyphenylalanine in plasma, and their responses to inhibition of monoamine oxidase. Clin Chem 32:2030–2033

    CAS  PubMed  Google Scholar 

  • Eisenhofer G, Esler MD, Meredith IT, Dart A, Cannon RO, 3rd, Quyyumi AA, Lambert G, Chin J, Jennings GL, Goldstein DS (1992) Sympathetic nervous function in human heart as assessed by cardiac spillovers of dihydroxyphenylglycol and norepinephrine. Circulation 85:1775–1785

    CAS  PubMed  Google Scholar 

  • Elman I, Goldstein DS, Eisenhofer G, Folio J, Malhotra AK, Adler CM, Pickar D, Breier A (1999a) Mechanism of peripheral noradrenergic stimulation by clozapine. Neuropsychopharmacology 20:29–34

    Article  CAS  PubMed  Google Scholar 

  • Elman I, Sokoloff L, Adler CM, Weisenfeld N, Breier A (1999b) The effects of pharmacological doses of 2-deoxyglucose on cerebral blood flow in healthy volunteers. Brain Res 815:243–249

    Article  CAS  PubMed  Google Scholar 

  • Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G (2001) Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens 14:304S–309S

    Article  CAS  PubMed  Google Scholar 

  • Farley IJ, Price KS, McCullough E, Deck JH, Hordynski W, Hornykiewicz O (1978) Norepinephrine in chronic paranoid schizophrenia: above-normal levels in limbic forebrain. Science 200:456–458

    CAS  PubMed  Google Scholar 

  • Finney GO (1989) Juvenile onset diabetes and schizophrenia? Lancet 2:1214–1215

    Article  CAS  Google Scholar 

  • Folkow B, Di Bona GF, Hjemdahl P, Toren PH, Wallin BG (1983) Measurements of plasma norepinephrine concentrations in human primary hypertension. A word of caution on their applicability for assessing neurogenic contributions. Hypertension 5:399–403

    CAS  PubMed  Google Scholar 

  • Gagner JP, Gauthier S, Sourkes TL (1985) Descending spinal pathways mediating the responses of adrenal tyrosine hydroxylase and catecholamines to insulin and 2-deoxyglucose. Brain Res 325:187–197

    Article  CAS  PubMed  Google Scholar 

  • Gattaz WF, Riederer P, Reynolds GP, Gattaz D, Beckmann H (1983) Dopamine and noradrenalin in the cerebrospinal fluid of schizophrenic patients. Psychiatry Res 8:243–250

    Article  CAS  PubMed  Google Scholar 

  • Glazer WM, Charney DS, Heninger GR (1987) Noradrenergic function in schizophrenia. Arch Gen Psychiatry 44:898–904

    CAS  PubMed  Google Scholar 

  • Goldstein D (1995) Stress, catecholamines, and cardiovascular disease. Oxford University, New York

  • Goldstein DS, Breier A, Wolkowitz OM, Pickar D, Lenders JW (1992) Plasma levels of catecholamines and corticotrophin during acute glucopenia induced by 2-deoxy-D-glucose in normal man. Clin Auton Res 2:359–366

    CAS  PubMed  Google Scholar 

  • Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL (1999) Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 48:839–847

    CAS  PubMed  Google Scholar 

  • Gotoh M, Takagi J, Mori S, Yatoh M, Hirooka Y, Yamanouchi K, Smythe GA (2001) Octreotide-induced suppression of the hyperglycemic response to neostigmine or bombesin: relationship to hypothalamic noradrenergic drive. Brain Res 919:155–159

    Article  CAS  PubMed  Google Scholar 

  • Havel PJ, Veith RC, Dunning BE, Taborsky GJ Jr (1988) Pancreatic noradrenergic nerves are activated by neuroglucopenia but not by hypotension or hypoxia in the dog. Evidence for stress-specific and regionally selective activation of the sympathetic nervous system. J Clin Invest 82:1538–1545

    CAS  PubMed  Google Scholar 

  • Hevener AL, Bergman RN, Donovan CM (1997) Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes 46:1521–1525

    CAS  PubMed  Google Scholar 

  • Hevener AL, Bergman RN, Donovan CM (2000) Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia. Diabetes 49:8–12

    CAS  PubMed  Google Scholar 

  • Horton RW, Meldrum BS, Bachelard H (1973) Enzymic and cerebral metabolic effects of 2-deoxy-D-glucose. J Neurochem 21:507–520

    Google Scholar 

  • Kammen DP van, Peters J, Kammen WB van, Nugent A, Goetz KL, Yao J, Linnoila M (1989) CSF norepinephrine in schizophrenia is elevated prior to relapse after haloperidol withdrawal. Biol Psychiatry 26:176–188

    Article  PubMed  Google Scholar 

  • Kammen DP van, Peters J, Yao J, Kammen WB van, Neylan T, Shaw D, Linnoila M (1990) Norepinephrine in acute exacerbations of chronic schizophrenia. Negative symptoms revisited. Arch Gen Psychiatry 47:161–168

    PubMed  Google Scholar 

  • Kato MM, Goodnick PJ (2001) Antipsychotic medication: effects on regulation of glucose and lipids. Expert Opin Pharmacother 2:1571–1582

    CAS  PubMed  Google Scholar 

  • Kemali D, Del Vecchio M, Maj M (1982) Increased noradrenaline levels in CSF and plasma of schizophrenic patients. Biol Psychiatry 17:711–717

    CAS  PubMed  Google Scholar 

  • Kendler KS (1986) A twin study of mortality in schizophrenia and neurosis. Arch Gen Psychiatry 43:643–649

    CAS  PubMed  Google Scholar 

  • Lake CR, Sternberg DE, Kammen DP van, Ballenger JC, Ziegler MG, Post RM, Kopin IJ, Bunney WE (1980) Schizophrenia: elevated cerebrospinal fluid norepinephrine. Science 207:331–333

    CAS  PubMed  Google Scholar 

  • Lindenmayer JP, Czobor P, Volavka J, Citrome L, Sheitman B, McEvoy JP, Cooper TB, Chakos M, Lieberman JA (2003) Changes in glucose and cholesterol levels in patients with schizophrenia treated with typical or atypical antipsychotics. Am J Psychiatry 160:290–296

    Article  PubMed  Google Scholar 

  • Matsunaga H, Iguchi A, Yatomi A, Uemura K, Miura H, Gotoh M, Mano T, Sakamoto N (1989) The relative importance of nervous system and hormones to the 2-deoxy-D-glucose-induced hyperglycemia in fed rats. Endocrinology 124:1259–1264

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Roth SD, Sandyk R, Schnur DB (1989) Persistent tardive dyskinesia and neuroleptic effects on glucose tolerance. Psychiatry Res 29:17–27

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Decina P, Bocola V, Saraceni F, Scapicchio PL (1996) Diabetes mellitus in schizophrenic patients. Compr Psychiatry 37:68–73

    PubMed  Google Scholar 

  • Naber D, Finkbeiner C, Fischer B, Zander KJ, Ackenheil M (1980) Effect of long-term neuroleptic treatment on prolactin and norepinephrine levels in serum of chronic schizophrenics: relations to psychopathology and extrapyramidal symptoms. Neuropsychobiology 6:181–189

    CAS  PubMed  Google Scholar 

  • Newcomer JW, Haupt DW, Fucetola R, Melson AK, Schweiger JA, Cooper BP, Selke G (2002) Abnormalities in glucose regulation during antipsychotic treatment of schizophrenia. Arch Gen Psychiatry 59:337–345

    Article  CAS  PubMed  Google Scholar 

  • Niijima A (1975) The effect of 2-deoxy-D-glucose and D-glucose on the efferent discharge rate of sympathetic nerves. J Physiol 251:231–243

    CAS  PubMed  Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Google Scholar 

  • Pascoe WS, Smythe GA, Storlien LH (1989) 2-deoxy-D-glucose-induced hyperglycemia: role for direct sympathetic nervous system activation of liver glucose output. Brain Res 505:23–28

    Article  CAS  PubMed  Google Scholar 

  • Popkin MK, Colon EA (2001) The interface of psychiatric disorders and diabetes mellitus. Curr Psychiatry Rep 3:243–250

    CAS  PubMed  Google Scholar 

  • Powchik P, Davidson M, Haroutunian V, Gabriel SM, Purohit DP, Perl DP, Harvey PD, Davis KL (1998) Postmortem studies in schizophrenia. Schizophr Bull 24:325–341

    CAS  PubMed  Google Scholar 

  • Riggs JE, Griggs RC, Moxley RT IIIrd (1984) Dissociation of glucose and potassium arterial-venous differences across the forearm by acetazolamide. A possible relationship to acetazolamide’s beneficial effect in hypokalemic periodic paralysis. Arch Neurol 41:35–38

    CAS  PubMed  Google Scholar 

  • Ryan MC, Thakore JH (2002) Physical consequences of schizophrenia and its treatment: the metabolic syndrome. Life Sci 71:239–257

    Article  CAS  PubMed  Google Scholar 

  • Ryan MC, Collins P, Thakore JH (2003) Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry 160:284–289

    Article  PubMed  Google Scholar 

  • Ryan MC, Flanagan S, Kinsella U, Keeling F, Thakore JH (2004) The effects of atypical antipsychotics on visceral fat distribution in first episode, drug-naive patients with schizophrenia. Life Sci 74:1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Skyler JS (2000) Diabetes mellitus types I and II: classification and diagnosis. In: Humes HD (ed) Kelley’s textbook of internal medicine 4th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 2751–2752

  • Smythe GA, Edwards SR (1992) Suppression of central noradrenergic neuronal activity inhibits hyperglycemia. Am J Physiol 263:E823–E827

    CAS  PubMed  Google Scholar 

  • Smythe GA, Grunstein HS, Bradshaw JE, Nicholson MV, Compton PJ (1984) Relationships between brain noradrenergic activity and blood glucose. Nature 308:65–67

    CAS  PubMed  Google Scholar 

  • Smythe GA, Pascoe WS, Storlien LH (1989) Hypothalamic noradrenergic and sympathoadrenal control of glycemia after stress. Am J Physiol 256:E231–E235

    CAS  PubMed  Google Scholar 

  • Stear S (2003) Health and fitness series. 1. The importance of physical activity for health. J Fam Health Care 13:10–13

    PubMed  Google Scholar 

  • Stein L, Wise CD (1971) Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171:1032–1036

    CAS  PubMed  Google Scholar 

  • Sternberg DE, Kammen DP van, Lake CR, Ballenger JC, Marder SR, Bunney WE, Jr (1981) The effect of pimozide on CSF norepinephrine in schizophrenia. Am J Psychiatry 138:1045–1050

    CAS  PubMed  Google Scholar 

  • Sternberg DE, Charney DS, Heninger GR, Leckman JF, Hafstad KM, Landis DH (1982) Impaired presynaptic regulation of norepinephrine in schizophrenia. Effects of clonidine in schizophrenic patients and normal controls. Arch Gen Psychiatry 39:285–289

    CAS  PubMed  Google Scholar 

  • Storlien LH, Grunstein HS, Smythe GA (1985) Guanethidine blocks the 2-deoxy-D-glucose-induced hypothalamic noradrenergic drive to hyperglycemia. Brain Res 335:144–147

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Ishimaru H, Ikarashi Y, Kishi E, Maruyama Y (1994) Hypothalamic cholinergic and noradrenergic neurons in hyperglycemia induced by 2-deoxyglucose. Brain Res 665:13–17

    CAS  PubMed  Google Scholar 

  • Takahashi A, Ishimaru H, Ikarashi Y, Kishi E, Maruyama Y (1996) Hypothalamic cholinergic activity associated with 2-deoxyglucose-induced hyperglycemia. Brain Res 734:116–122

    CAS  PubMed  Google Scholar 

  • Thibaut F, Ribeyre JM, Dourmap N, Menard JF, Dollfus S, Petit M (1998) Plasma 3-methoxy-4-hydroxyphenylglycol and homovanillic acid measurements in deficit and nondeficit forms of schizophrenia. Biol Psychiatry 43:24–30

    Google Scholar 

  • Tietz NW (1995) Clinical Guide to Laboratory Tests, 3rd edn. WA Saunders, Philadelphia

  • Walters JM, Ward GM, Barton J, Arackal R, Boston RC, Best JD, Alford FP (1997) The effect of norepinephrine on insulin secretion and glucose effectiveness in non-insulin-dependent diabetes. Metabolism 46:1448–1453

    CAS  PubMed  Google Scholar 

  • Wyngaarden JB, Smith LH (1988) Cecil Textbook of Medicine. Saunders Company, Philadelphia, pp 1381–1387

  • Yoshimatsu H, Oomura Y, Katafuchi T, Niijima A (1987) Effects of hypothalamic stimulation and lesion on adrenal nerve activity. Am J Physiol 253:R418–R424

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Tammie Logan for the performance of the catecholamine assays, Christopher Bir for his help with the conduct of this study, the nursing staff of 4 East Clinical Care Unit, NIH, for the excellent care of the research subjects and Christine Melin for her help with the preparation of the manuscript. These experiments comply with the current laws of the United States of America, the country in which they were performed. All human studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethics standards laid down in the 1964 Declaration of Helsinki. This research was supported by grants to IE from the National Institute on Drug Abuse (DA#14410) and the National Alliance on Research in Schizophrenia and Affective Disorders and to SEL from the National Institute on Drug Abuse (DA#00343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Elman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elman, I., Rott, D., Green, A.I. et al. Effects of pharmacological doses of 2-deoxyglucose on plasma catecholamines and glucose levels in patients with schizophrenia. Psychopharmacology 176, 369–375 (2004). https://doi.org/10.1007/s00213-004-1890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1890-y

Keywords

Navigation