Skip to main content
Log in

Sex differences in response to oral amitriptyline in three animal models of depression in C57BL/6J mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Knockout and transgenic mice provide a tool for assessing the mechanisms of action of antidepressants. The effectiveness of oral administration of the tricyclic antidepressant amitriptyline (AMI) was assessed in C57BL/6J (B6) mice, a common genetic background on which knockout and transgenic mice are maintained.

Objectives

We determined whether oral AMI would have antidepressant-like effects in B6 mice and whether these effects varied according to sex, duration of treatment, and the depression model utilized.

Methods

Male and female B6 mice were administered AMI (200 μg/ml) in the drinking water as the sole source of fluid, along with 2% saccharin to increase palatability. Control mice were administered 2% saccharin alone. Mice were assessed for responsiveness to AMI in the tail suspension test (TST), the forced swim test (FST), and the learned helplessness (LH) paradigm.

Results

In the TST, AMI decreased immobility time regardless of sex or duration of treatment. AMI also decreased immobility time in the FST, but chronic treatment was necessary for full efficacy in both sexes. In the LH paradigm, both subchronic and chronic AMI treatment decreased escape latencies in female mice, but AMI was effective only after chronic treatment in males. The antidepressant-like effects of AMI could not be explained by differences in locomotor activity because activity levels were not altered by antidepressant treatment.

Conclusions

Overall, oral AMI administration provides a valid model for behavioral assessment of antidepressant-like effects in knockout and transgenic mice maintained on a B6 background, but the effectiveness of oral AMI varies depending on sex, duration of treatment, and the depression model used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Anisman H, Hayley S, Kelly O, Borowski T, Merali Z (2001) Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: mouse strain-dependent outcomes. Behav Neurosci 115:443–454

    Article  CAS  PubMed  Google Scholar 

  • Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of "behavioral despair". Pharmacol Biochem Behav 70:187–192

    Google Scholar 

  • Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377:424–428

    Google Scholar 

  • Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    CAS  PubMed  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    CAS  PubMed  Google Scholar 

  • Breyer-Pfaff U, Gaertner HJ, Giedke H (1982) Plasma levels, psychophysiological variables, and clinical response to amitriptyline. Psychiatry Res 6:223–34

    Article  CAS  PubMed  Google Scholar 

  • Breyer-Pfaff U, Giedke H, Gaertner HJ, Nill K (1989) Validation of a therapeutic plasma level range in amitriptyline treatment of depression. J Clin Psychopharmacol 9:116–121

    CAS  PubMed  Google Scholar 

  • Caldarone BJ, George TP, Zachariou V, Picciotto MR (2000) Gender differences in learned helplessness behavior are influenced by genetic background. Pharmacol Biochem Behav 66:811–817

    Article  CAS  PubMed  Google Scholar 

  • Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA (2002) cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 22:3262–3268

    CAS  PubMed  Google Scholar 

  • Coudore F, Besson A, Eschalier A, Lavarenne J, Fialip J (1996) Plasma and brain pharmacokinetics of amitriptyline and its demethylated and hydroxylated metabolites after one and six half-life repeated administrations to rats. Gen Pharmacol 27:215–219

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Dalvi A, Jin SH, Hirsch BR, Lucki I, Thomas SA (2001) Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther 298:651–657

    Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Dalvi A, Lucki I (1999) Murine models of depression. Psychopharmacology 147:14–16

    Google Scholar 

  • David DJ, Nic Dhonnchadha BA, Jolliet P, Hascoet M, Bourin M (2001) Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression? Behav Brain Res 119:203–211

    Google Scholar 

  • Ernfors P, Kucera J, Lee KF, Loring J, Jaenisch R (1995) Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol 39:799–807

    CAS  PubMed  Google Scholar 

  • Holmes A, Yang RJ, Murphy DL, Crawley JN (2002) Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27:914–923

    Article  CAS  PubMed  Google Scholar 

  • Izumi J, Washizuka M, Hayashi-Kuwabara Y, Yoshinaga K, Tanaka Y, Ikeda Y, Kiuchi Y, Oguchi K (1997) Evidence for a depressive-like state induced by repeated saline injections in Fischer 344 rats. Pharmacol Biochem Behav 57:883–888

    Article  CAS  PubMed  Google Scholar 

  • Kornstein SG, Schatzberg AF, Thase ME, Yonkers KA, McCullough JP, Keitner GI, Gelenberg AJ, Davis SM, Harrison WM, Keller MB (2000) Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am J Psychiatry 157:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • Leshner AI, Remler H, Biegon A, Samuel D (1979) Desmethylimipramine (DMI) counteracts learned helplessness in rats. Psychopharmacology 66:207–208

    CAS  PubMed  Google Scholar 

  • Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science 273:803–805

    CAS  PubMed  Google Scholar 

  • Liu X, Gershenfeld HK (2001) Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biol Psychiatry 49:575–581

    Article  CAS  PubMed  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 155:315–322

    CAS  PubMed  Google Scholar 

  • MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science 273:801–803

    CAS  PubMed  Google Scholar 

  • Maier SF (1984) Learned helplessness and animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 8:435–446

    Article  CAS  PubMed  Google Scholar 

  • Maier SF, Seligman ME (1976) Learned helplessness: theory and evidence. J Exp Psychol Gen 105:3–46

    Article  Google Scholar 

  • Mayorga AJ, Dalvi A, Page ME, Zimov-Levinson S, Hen R, Lucki I (2001) Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther 298:1101–1107

    Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA 95:10734–10739

    CAS  PubMed  Google Scholar 

  • Petty F, Sherman AD (1979) Reversal of learned helplessness by imipramine. Commun Psychopharmacol 3:371–373

    CAS  PubMed  Google Scholar 

  • Picciotto MR, Zoli M, Léna C, Bessis A, Lallemand Y, Le Novère N, Vincent P, Merlo-Pich E, Brulet P, Changeux J-P (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90:991–1001

    CAS  PubMed  Google Scholar 

  • Schauwecker PE (2002) Complications associated with genetic background effects in models of experimental epilepsy. Prog Brain Res 135:139–148

    CAS  PubMed  Google Scholar 

  • Schramm NL, McDonald MP, Limbird LE (2001) The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci 21:4875–4882

    CAS  PubMed  Google Scholar 

  • Shanks N, Anisman H (1988) Stressor-provoked behavioral changes in six strains of mice. Behav Neurosci 102:894–905

    CAS  PubMed  Google Scholar 

  • Shanks N, Anisman H (1989) Strain-specific effects of antidepressants on escape deficits induced by inescapable shock. Psychopharmacology 99:122–128

    CAS  PubMed  Google Scholar 

  • Shapiro BH, Agrawal AK, Pampori NA (1995) Gender differences in drug metabolism regulated by growth hormone. Int J Biochem Cell Biol 27:9–20

    Article  CAS  PubMed  Google Scholar 

  • Sherman AD, Allers GL, Petty F, Henn FA (1979) A neuropharmacologically-relevant animal model of depression. Neuropharmacology 18:891–893

    Article  CAS  PubMed  Google Scholar 

  • Sherman AD, Sacquitne JL, Petty F (1982) Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 16:449–454

    CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Google Scholar 

  • Steru L, Chermat R, Thierry B, Mico JA, Lenegre A, Steru M, Simon P, Porsolt RD (1987) The automated tail suspension test: a computerized device which differentiates psychotropic drugs. Prog Neuropsychopharmacol Biol Psychiatry 11:659–671

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Tzavara ET, Witkin JM, Fienberg AA, Nomikos GG, Greengard P (2002) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Natl Acad Sci USA 99:3182–3187

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum B, Anisman H (2003) Impact of chronic intermittent challenges in stressor-susceptible and resilient strains of mice. Biol Psychiatry 53:292–303

    Article  PubMed  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546

    Google Scholar 

  • Telner JI, Singhal RL (1981) Effects of nortriptyline treatment on learned helplessness in the rat. Pharmacol Biochem Behav 14:823–826

    Article  CAS  PubMed  Google Scholar 

  • Ulrich S, Northoff G, Wurthmann C, Partscht G, Pester U, Herscu H, Meyer FP (2001) Serum levels of amitriptyline and therapeutic effect in non-delusional moderately to severely depressed in-patients: a therapeutic window relationship. Pharmacopsychiatry 34:33–40

    Article  CAS  PubMed  Google Scholar 

  • Vaidya VA, Duman RS (2001) Depresssion-emerging insights from neurobiology. Br Med Bull 57:61–79

    Article  CAS  PubMed  Google Scholar 

  • Weissman MM, Klerman GL (1985) Gender and depression. Trends Neurosci 8:416–420

    Article  Google Scholar 

  • Wong ML, Licinio J (2001) Research and treatment approaches to depression. Nat Rev Neurosci 2:343–351

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79:945–955

    CAS  PubMed  Google Scholar 

  • Yonkers KA, Brawman-Mintzer O (2002) The pharmacologic treatment of depression: is gender a critical factor? J Clin Psychiatry 63:610–615

    Google Scholar 

  • Ziegler VE, Co BT, Taylor JR, Clayton PJ, Biggs JT (1976) Amitriptyline plasma levels and therapeutic response. Clin Pharmacol Ther 19:795–801

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Theresa Tritto with assistance in designing the tail suspension apparatus. This work was supported by DA00436, DA10455 and DA13334 from the National Institutes of Health and the Yale Transdisciplinary Tobacco Use Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Picciotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldarone, B.J., Karthigeyan, K., Harrist, A. et al. Sex differences in response to oral amitriptyline in three animal models of depression in C57BL/6J mice. Psychopharmacology 170, 94–101 (2003). https://doi.org/10.1007/s00213-003-1518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1518-7

Keywords

Navigation