Skip to main content
Log in

A Lagrange multiplier method for a Stokes–Biot fluid–poroelastic structure interaction model

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study a finite element computational model for solving the coupled problem arising in the interaction between a free fluid and a fluid in a poroelastic medium. The free fluid is governed by the Stokes equations, while the flow in the poroelastic medium is modeled using the Biot poroelasticity system. Equilibrium and kinematic conditions are imposed on the interface. A mixed Darcy formulation is employed, resulting in continuity of flux condition of essential type. A Lagrange multiplier method is employed to impose weakly this condition. A stability and error analysis is performed for the semi-discrete continuous-in-time and the fully discrete formulations. A series of numerical experiments is presented to confirm the theoretical convergence rates and to study the applicability of the method to modeling physical phenomena and the robustness of the model with respect to its parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. www.spe.org/web/csp.

References

  1. Ambartsumyan, I., Khattatov, E., Yotov, I., Zunino, P.: Simulation of flow in fractured poroelastic media: a comparison of different discretization approaches. In: Finite Difference Methods, Theory and Applications, Volume 9045 of Lecture Notes in Computer Science, pp. 3–14. Springer, Cham (2015)

  2. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badia, S., Quaini, A., Quarteroni, A.: Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. J. Comput. Phys. 228(21), 7986–8014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basting, S., Birken, P., Brummelen, E.H., Canic, S., Colciago, C., Deparis, S., Forti, D., Glowinski, R., Hoffman, J., Jodlbauer, D., et al.: Fluid–Structure Interaction: Modeling, Adaptive Discretisations and Solvers, vol. 20. Walter de Gruyter, New York (2017)

    Google Scholar 

  5. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid–Structure Interaction: Methods and Applications. Wiley, London (2013)

    Book  MATH  Google Scholar 

  6. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally impermeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  7. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  8. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  9. Brenan, K., Campbell, S., Petzold, L.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  10. Bukac, M., Yotov, I., Zakerzadeh, R., Zunino, P.: Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292, 138–170 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bukac, M., Yotov, I., Zunino, P.: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differ. Equ. 31(4), 1054–1100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bukac, M., Yotov, I., Zunino, P.: Dimensional model reduction for flow through fractures in poroelastic media. ESAIM Math. Model. Numer. Anal. 51, 1429–1471 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Bungartz, H.-J., Schäfer, M.: Fluid–Structure Interaction: Modelling, Simulation, Optimisation, vol. 53. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Burman, E., Fernández, M.A.: Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198(5–8), 766–784 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burman, E., Fernández, M.A.: Explicit strategies for incompressible fluid–structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling. Int. J. Numer. Methods Eng. 97(10), 739–758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carraro, T., Goll, C., Marciniak-Czochra, A., Mikelić, A.: Pressure jump interface law for the Stokes–Darcy coupling: confirmation by direct numerical simulations. J. Fluid Mech. 732, 510–536 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.: The Finite Element Method for Elliptic Problems, vol. 4. North Holland, New York (1978)

    Book  MATH  Google Scholar 

  18. D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM. Math. Model. Numer. Anal. 46(2), 465–489 (2012)

    Article  MATH  Google Scholar 

  19. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Smoothness and Asymptotics of Solutions, Volume 1341 of Lecture Notes in Mathematics. Springer, Berlin (1988)

    Google Scholar 

  20. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Volume 159 of Applied Mathematical Sciences. Springer, New York (2004)

    Book  MATH  Google Scholar 

  22. Fernández, M.A.: Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid. Comptes Rendus Math. 349(7), 473–477 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1. Springer, Berlin (2010)

    MATH  Google Scholar 

  24. Frih, N., Martin, V., Roberts, J.E., Saada, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043–1060 (2012)

    Article  Google Scholar 

  25. Frih, N., Roberts, J.E., Saada, A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12(1), 91–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fumagalli, A., Scotti, A.: Numerical modelling of multiphase subsurface flow in the presence of fractures. Commun. Appl. Ind. Math. 3(1), e-380 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Galdi, G.P., Rannacher, R. (eds.): Fundamental Trends in Fluid–Structure Interaction, volume 1 of Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications. World Scientific Publishing, Hackensack (2010)

  28. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupled Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Ganis, B., Yotov, I.: Implementation of a mortar mixed finite element method using a multiscale flux basis. Comput. Methods Appl. Mech. Eng. 198(49–52), 3989–3998 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes–Darcy flows. Numer. Math. 127(1), 93–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25(4), 587–645 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Jäger, W., Mikelić, A., Neuss, N.: Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22(6), 2006–2028 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kovacik, J.: Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 18(13), 1007–1010 (1999)

    Article  Google Scholar 

  36. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lesinigo, M., D’Angelo, C., Quarteroni, A.: A multiscale Darcy–Brinkman model for fluid flow in fractured porous media. Numer. Math. 117(4), 717–752 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Martin, V., Jaffre, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mathew, T.P.: Domain decomposition and iterative refinement methods for mixed finite element discretizations of elliptic problems. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University. Technical report 463 (1989)

  40. Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 19(6), 1171–1195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Morales, F.A., Showalter, R.E.: The narrow fracture approximation by channeled flow. J. Math. Anal. Appl. 365(1), 320–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Morales, F.A., Showalter, R.E.: A Darcy–Brinkman model of fractures in porous media. J. Math. Anal. Appl. 452(2), 1332–1358 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Volume 23 of Springer Series in Computational Mathematics. Springer, Berlin (1994)

    MATH  Google Scholar 

  44. Richter, T.: Fluid–Structure Interactions: Models, Analysis and Finite Elements, vol. 118. Springer, Berlin (2017)

    MATH  Google Scholar 

  45. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Saffman, P.G.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. L 2, 93–101 (1971)

    Article  MATH  Google Scholar 

  47. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Showalter, R.E.: Poroelastic filtration coupled to Stokes flow. In: Control Theory of Partial Differential Equations, Volume 242 of Lecture Notes in Pure and Applied Mathematics, pp .229–241. Chapman & Hall/CRC, Boca Raton (2005)

  49. Showalter, R.E.: Nonlinear degenerate evolution equations in mixed formulation. SIAM J. Math. Anal. 42(5), 2114–2131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Taylor, C., Hood, P.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1(1), 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268, 264–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26(3), 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Yi, S.-Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 30(4), 1189–1210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Yotov.

Additional information

Ilona Ambartsumyan, Eldar Khattatov and Ivan Yotov are partially supported by DOE Grant DE-FG02-04ER25618 and NSF Grant DMS 1418947. Paolo Zunino is partially supported by DOE Grant DE-FG02-04ER25618 and by the INdAM Research group GNCS.

Appendix: Fully discrete analysis

Appendix: Fully discrete analysis

In this section we provide a detailed analysis of the stability and convergence of the fully discrete method (6.1)–(6.3). We will utilize the following discrete Gronwall inequality [43].

Lemma 9.1

(Discrete Gronwall lemma) Let \(\tau > 0\), \(B \ge 0\), and let \(a_n,b_n,c_n,d_n\), \(n \ge 0\), be non-negative sequences such that \(a_0 \le B\) and

$$\begin{aligned} a_n + \tau \sum _{l=1}^n b_l \le \tau \sum _{l=1}^{n-1} d_la_l + \tau \sum _{l=1}^n c_l +B, \quad n\ge 1. \end{aligned}$$

Then,

$$\begin{aligned} a_n + \tau \sum _{l=1}^n b_l \le \exp \left( \tau \sum _{l=1}^{n-1}d_l\right) \left( \tau \sum _{l=1}^n c_l + B \right) , \quad n \ge 1. \end{aligned}$$

Proof of Theorem 6.1

We choose

$$\begin{aligned} (\mathbf{v}_{f,h},w_{f,h},\mathbf{v}_{p,h},w_{p,h},\varvec{\xi }_{p,h},\mu _h) = \left( \mathbf{u}^{n}_{f,h},p^{n}_{f,h},\mathbf{u}^{n}_{p,h},p^{n}_{p,h},d_{\tau } \varvec{\eta }^{n}_{p,h},\lambda _h\right) \end{aligned}$$

in (6.1)–(6.3) and use the discrete analog of (3.17):

$$\begin{aligned} \int _{S}u^n d_{\tau }\phi ^n = \frac{1}{2} d_{\tau }\Vert \phi ^n\Vert ^2_{L^2(S)} + \frac{1}{2} \tau \Vert d_{\tau }\phi ^n\Vert ^2_{L^2(S)} \end{aligned}$$
(9.1)

to obtain the energy equality

$$\begin{aligned}&\frac{1}{2} d_{\tau }\left( s_0 \left\| p^n_{p,h}\right\| ^2_{L^2\left( \Omega _p\right) } + a^e_{p}\left( \varvec{\eta }^n_{p,h},\varvec{\eta }^n_{p,h}\right) \right) \nonumber \\&\quad + \frac{\tau }{2} \left( s_0 \left\| d_{\tau }p^n_{p,h}\right\| ^2_{L^2\left( \Omega _p\right) } +a^e_{p}\left( d_{\tau }\varvec{\eta }^n_{p,h},d_{\tau }\varvec{\eta }^n_{p,h}\right) \right) \nonumber \\&\quad + a_{f}\left( \mathbf{u}^n_{f,h},\mathbf{u}^n_{f,h}\right) + a^d_{p}\left( \mathbf{u}^n_{p,h},\mathbf{u}^n_{p,h}\right) + \left| \mathbf{u}^n_{f,h} - d_{\tau }\varvec{\eta }^n_{p,h} \right| ^2_{a_{BJS}} = \mathcal {F} \left( t_n\right) . \end{aligned}$$
(9.2)

The right-hand side can be bounded as follows, using inequalities (4.1) and (4.3),

$$\begin{aligned} \mathcal {F}\left( t_n\right)&= \left( \mathbf{f}_{f}\left( t_n\right) ,\mathbf{u}^n_{f,h}\right) + \left( \mathbf{f}_{p}\left( t_n\right) ,d_\tau \varvec{\eta }^n_{p,h}\right) +\left( q_{f}\left( t_n\right) ,p^n_{f,h}\right) + \left( q_{p}\left( t_n\right) ,p^n_{p,h}\right) \nonumber \\&\le \left( \mathbf{f}_{p}\left( t_n\right) ,d_\tau \varvec{\eta }^n_{p,h}\right) + \frac{\epsilon _1}{2} \left( \left\| \mathbf{u}^n_{f,h}\right\| ^2_{L^2\left( \Omega _f\right) } + \left\| p^n_{f,h}\right\| ^2_{L^2\left( \Omega _f\right) } + \left\| p^n_{p,h}\right\| ^2_{L^2\left( \Omega _p\right) }\right) \nonumber \\&\quad + C \frac{1}{2\epsilon _1}\left( \left\| \mathbf{f}_{f}\left( t_n\right) \right\| ^2_{L^2\left( \Omega _f\right) } + \left\| q_{f}\left( t_n\right) \right\| ^2_{L^2\left( \Omega _f\right) } + \left\| q_{p}\left( t_n\right) \right\| ^2_{L^2\left( \Omega _p\right) } \right) . \qquad \end{aligned}$$
(9.3)

Combining (9.2) and (9.3), summing up over the time index \(n=1,...,N\), multiplying by \(\tau \) and using the coercivity of the bilinear forms (3.4)–(3.6), we obtain

$$\begin{aligned}&s_0 \left\| p^N_{p,h}\right\| ^2_{L^2\left( \Omega _p\right) } + \left\| \varvec{\eta }^N_{p,h}\right\| ^2_{H^1\left( \Omega _p\right) }\nonumber \\&\quad \quad + \tau \sum _{n=1}^{N}\left( \left\| \mathbf{u}^n_{f,h}\right\| ^2_{H^1\left( \Omega _{f}\right) } + \left\| \mathbf{u}^n_{p,h}\right\| ^2_{L^2\left( \Omega _{p}\right) }+ \left| \mathbf{u}^n_{f,h} - d_\tau \varvec{\eta }^n_{p,h}\right| ^2_{a_{BJS}} \right) \nonumber \\&\quad \quad + \tau ^2 \sum _{n=1}^{N} \left( s_0\left\| d_\tau p^n_{p,h}\right\| ^2_{L^2\left( \Omega _p\right) } + \left\| d_\tau \varvec{\eta }^n_{p,h}\right\| ^2_{H^1\left( \Omega _p\right) }\right) \nonumber \\&\quad \le C\left( s_0 \left\| p^0_{p,h}\right\| ^2_{L^2\left( \Omega _p\right) } + \left\| \varvec{\eta }^0_{p,h}\right\| ^2_{H^1\left( \Omega _p\right) }\right. \nonumber \\&\qquad + \epsilon _1 \tau \sum _{n=1}^{N} \left( \left\| \mathbf{u}^n_{f,h}\right\| ^2_{L^2\left( \Omega _f\right) } + \left\| p^n_{f,h}\right\| ^2_{L^2\left( \Omega _f\right) } +\left\| p^n_{p,h}\right\| ^2_{L^2\left( \Omega _p\right) }\right) \nonumber \\&\qquad + \epsilon _1^{-1}\tau \sum _{n=1}^{N}\left( \left\| \mathbf{f}_{f}\left( t_n\right) \right\| ^2_{L^2\left( \Omega _f\right) } + \left\| q_{f}\left( t_n\right) \right\| ^2_{L^2\left( \Omega _f\right) } + \left\| q_{p}\left( t_n\right) \right\| ^2_{L^2\left( \Omega _p\right) } \right) \nonumber \\&\qquad \left. +\,\tau \sum _{n=1}^{N}\left( \mathbf{f}_{p}\left( t_n\right) ,d_\tau \varvec{\eta }^n_{p,h}\right) \right) . \end{aligned}$$
(9.4)

To bound the last term on the right we use summation by parts:

$$\begin{aligned}&\tau \sum _{n=1}^{N}\left( \mathbf{f}_{p}\left( t_n\right) ,d_\tau \varvec{\eta }^n_{p,h}\right) = \left( \mathbf{f}_p\left( t_N\right) ,\varvec{\eta }_{p,h}^N\right) - \left( \mathbf{f}_p\left( 0\right) ,\varvec{\eta }_{p,h}^0\right) - \tau \sum _{n=1}^{N-1}\left( d_\tau \mathbf{f}_{p}^n,\varvec{\eta }^n_{p,h}\right) \nonumber \\&\qquad \le \frac{\epsilon _1}{2} \left\| \varvec{\eta }_{p,h}^N\right\| ^2_{L^2\left( \Omega _p\right) } + \frac{1}{2\epsilon _1}\left\| \mathbf{f}_p\left( t_N\right) \right\| ^2_{L^2\left( \Omega _p\right) } + \frac{\tau }{2}\sum _{n=1}^{N-1}\left\| \varvec{\eta }^n_{p,h}\right\| ^2_{L^2\left( \Omega _p\right) } \nonumber \\&\qquad \qquad + \frac{1}{2} \left( \left\| \varvec{\eta }_{p,h}^0\right\| ^2_{L^2\left( \Omega _p\right) } + \left\| \mathbf{f}_{p}\left( 0\right) \right\| ^2_{L^2\left( \Omega _p\right) } + \tau \sum _{n=1}^{N-1}\left\| d_\tau \mathbf{f}_{p}^n\right\| ^2_{L^2\left( \Omega _p\right) }\right) . \end{aligned}$$
(9.5)

Next using the inf–sup condition (3.9) for \((p^n_{f,h},p^n_{p,h}, \lambda ^n_h)\) we obtain, in a similar way to (4.8),

$$\begin{aligned}&\epsilon _2\tau \sum _{n=1}^N \Big (\left\| p^n_{f,h}\right\| ^2_{L^2(\Omega _f)} + \left\| p^n_{p,h}\right\| ^2_{L^2(\Omega _p)} + \left\| \lambda ^n_h\right\| ^2_{ \Lambda _h} \Big ) \nonumber \\&\quad \le C \epsilon _2\tau \sum _{n=1}^N \Big ( \left\| \mathbf{f}_{f}(t_n)\right\| ^2_{L^2(\Omega _f)} + \left\| \mathbf{f}_{p}(t_n)\right\| ^2_{L^2(\Omega _p)} + \left\| \mathbf{u}^n_{f,h}\right\| ^2_{H^1(\Omega _f)} + \left\| \mathbf{u}^n_{p,h}\right\| ^2_{L^2(\Omega _p)} \nonumber \\&\quad \quad + \left\| \varvec{\eta }^n_{p,h}\right\| ^2_{H^1(\Omega _p)} + \left| \mathbf{u}^n_{f,h}-d_\tau \varvec{\eta }^n_{p,h}\right| ^2_{a_{BJS}}\Big ). \end{aligned}$$
(9.6)

Combining (9.4)–(9.6), and taking \(\epsilon _2\) small enough, and then \(\epsilon _1\) small enough, and using Lemma 9.1 with \(a_n = \Vert \varvec{\eta }^n_{p,h}\Vert ^2_{H^1(\Omega _p)}\), gives

$$\begin{aligned}&s_0 \left\| p^N_{p,h}\right\| ^2_{L^2(\Omega _p)} + \left\| \varvec{\eta }^N_{p,h}\right\| ^2_{H^1(\Omega _p)}\\&\quad \quad +\tau \sum _{n=1}^{N} \left[ \left\| \mathbf{u}^n_{f,h}\right\| ^2_{H^1(\Omega _{f})} +\left\| \mathbf{u}^n_{p,h}\right\| ^2_{L^2(\Omega _{p})}+\,|\mathbf{u}^n_{f,h} - d_\tau \varvec{\eta }^n_{p,h}|^2_{a_{BJS}} \right] \\&\quad \quad + \tau ^2\sum _{n=1}^{N} \left[ s_0\left\| d_\tau p^n_{p,h}\right\| ^2_{L^2(\Omega _p)} + \left\| d_\tau \varvec{\eta }^n_{p,h}\right\| ^2_{H^1(\Omega _p)} \right] \\&\quad \quad + \tau \sum _{n=1}^{N} \left[ \left\| p^n_{p,h}\right\| ^2_{L^2(\Omega _p)} +\left\| p^n_{f,h}\right\| ^2_{L^2(\Omega _f)}+\left\| \lambda ^n_{h}\right\| ^2_{\Lambda _h} \right] \\&\quad \le C\exp (T)\Big (s_0 \left\| p^0_{p,h}\right\| ^2_{L^2(\Omega _p)} + \left\| \varvec{\eta }^0_{p,h}\right\| ^2_{H^1(\Omega _p)}+ \left\| \mathbf{f}_{p}(0)\right\| ^2_{L^2(\Omega _p)} \\&\qquad +\tau \sum _{n=1}^{N} \Big [ \left\| \mathbf{f}_{f}(t_n)\right\| ^2_{L^2(\Omega _f)}+\left\| \mathbf{f}_{p}(t_n)\right\| ^2_{L^2(\Omega _p)} + \left\| q_{f}(t_n)\right\| ^2_{L^2(\Omega _f)}\\&\qquad + \left\| q_{p}(t_n)\right\| ^2_{L^2(\Omega _p)}+\left\| d_\tau \mathbf{f}_{p}\right\| ^2_{L^2(\Omega _p)}\Big ] \Big ), \end{aligned}$$

which implies the statement of the theorem using the appropriate space-time norms. \(\square \)

For the sake of space, we do not present the proof of Theorem 6.2. The error equations are obtained by subtracting the first two equations of the fully discrete formulation (6.1)–(6.2) from the their continuous counterparts (2.12)–(2.13):

$$\begin{aligned}&a_{f}\left( \mathbf{e}^n_f,\mathbf{v}_{f,h}\right) + a^d_{p}\left( \mathbf{e}^n_p,\mathbf{v}_{p,h}\right) + a^e_{p}\left( \mathbf{e}^n_s,\varvec{\xi }_{p,h}\right) \nonumber \\&\qquad +a_{BJS}\left( \mathbf{e}^n_f,d_\tau \mathbf{e}^n_{s};\mathbf{v}_{f,h},\varvec{\xi }_{p,h}\right) + b_f\left( \mathbf{v}_{f,h},e^n_{fp}\right) + b_p\left( \mathbf{v}_{p,h},e^n_{pp}\right) \nonumber \\&\qquad +\alpha b_p\left( \varvec{\xi }_{p,h},e^n_{pp}\right) + b_{\Gamma }\left( \mathbf{v}_{f,h},\mathbf{v}_{p,h},\varvec{\xi }_{p,h};e^n_\lambda \right) +\left( s_0\,d_\tau e^n_{pp},w_{p,h}\right) \nonumber \\&\qquad - \alpha b_p\left( d_\tau e^n_{s},w_{p,h}\right) - b_p\left( \mathbf{e}^n_{p},w_{p,h}\right) - b_f\left( \mathbf{e}^n_{f},w_{f,h}\right) \nonumber \\&\qquad = \left( s_0 r_n\left( p_p\right) ,w_{p,h}\right) +a_{BJS}\left( 0,r_n\left( \varvec{\eta }_{p}\right) ;\mathbf{v}_{f,h},\varvec{\xi }_{p,h}\right) - \alpha b_p\left( r_n\left( \varvec{\eta }_p\right) \!,w_{p,h}\right) , \end{aligned}$$
(9.7)

where \(r_n\) denotes the difference between the time derivative and its discrete analog:

$$\begin{aligned} r_n(\theta )&= \partial _t \theta (t_n) -d_\tau \theta ^n. \end{aligned}$$

It is easy to see that [11, Lemma 4] for sufficiently smooth \(\theta \),

$$\begin{aligned} \tau \sum _{n=1}^N\Vert r_n(\theta )\Vert ^2_{H^k(S)} \le C\tau ^2\Vert \partial _{tt}\theta \Vert ^2_{L^2(0,T;H^k(S))}. \end{aligned}$$

The proof of Theorem 6.2 follows the structure of the proof of Theorem 5.1, using discrete-in-time arguments as in the proof of Theorem 6.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambartsumyan, I., Khattatov, E., Yotov, I. et al. A Lagrange multiplier method for a Stokes–Biot fluid–poroelastic structure interaction model. Numer. Math. 140, 513–553 (2018). https://doi.org/10.1007/s00211-018-0967-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0967-1

Mathematics Subject Classification

Navigation