Skip to main content
Log in

Max-norm estimates for Stokes and Navier–Stokes approximations in convex polyhedra

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We prove error estimates in the maximum norm, namely in \(W^{1,\infty }(\Omega )^3\times L^\infty (\Omega )\), for the Stokes and Navier–Stokes equations in convex, three-dimensional domains \(\Omega \) with simplicial boundaries. We modify the weighted \(L^2\) estimates for regularized Green functions used earlier by us, which impose restrictions on the domain beyond convexity. The new ingredient is a Hölder regularity estimate proved recently by V. Maz’ya and J. Rossmann for the Stokes system on polyhedra. We also extend the error analysis to \(W^{1,r}(\Omega )^3\times L^r(\Omega )\) for \(1<r<\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Girault, V., Nochetto, R.H., Scott, L.R.: Stability of the finite element Stokes projection in \(W^{1,\infty }\). Comptes Rendus Math. 338(12), 957–962 (2004)

  2. Girault, V., Nochetto, R.H., Scott, L.R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84(3), 279–330 (2005)

  3. Maz’ya, V.G., Rossmann, J.: Schauder estimates for solutions to a mixed boundary value problem for the Stokes system in polyhedral domains. Math. Methods Appl. Sci. 29(9), 965–1017 (2006)

  4. Guzmán, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math. Comput. 81(280), 1879–1902 (2012)

  5. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, vol. 140. Academic press, Dublin (2003)

  6. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia (1967)

  7. Grisvard, P.: Elliptic problems in nonsmooth domains, vol. 69. Society for Industrial and Applied Mathematics, Philadelphia (2011)

  8. Lions, J.-L., Magenes, E.: Problèmes aux Limites non Homogènes et Applications, vol. 1. Dunod, Paris (1968)

  9. Maz’ya, V.G., Rossmann, J.: Elliptic equations in polyhedral domains, vol. 162. American Mathematical Soc., Providence (2010)

  10. Dauge, M.: Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. Part I. Linearized equations. SIAM J. Math. Anal. 20(1), 74–97 (1989)

  11. Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslov. Math. J.44(1), 109–140 (1994)

  12. Maz’ya, V.G., Rossmann, J.: \(L^p\) estimates of solutions to mixed boundary value problem for the Stokes system in polyhedral domains. Math. Nachr. 20(7), 193–751 (2007)

  13. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations: theory and algorithms. Springer, New York (1986)

  14. Durán, R.G., Muschietti, M.A.: An explicit right inverse of the divergence operator which is continuous in weighted norms. Stud. Math. 148(3), 207–219 (2001)

  15. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

  16. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

  17. Nochetto, R.H., Pyo, J.-H.: Optimal relaxation parameter for the Uzawa method. Numer. Math. 98(4), 695–702 (2004)

  18. Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis (2013). arXiv:1302.0698

  19. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 2, pp. 17–351. Elsevier, Amsterdam (1991)

  20. Natterer, F.: Über die punktweise Konvergenz finiter Elemente. Numer. Math. 25(1), 67–77 (1975)

  21. Fortin, M.: An analysis of the convergence of mixed finite element methods. ESAIM Math. Model. Numer. Anal. 11(4), 341–354 (1977)

  22. Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

  23. Rannacher, R., Scott, L.R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38, 437–445 (1982)

  24. Friedman, A.: Foundations of Modern Analysis. Dover publications, New York (1970)

  25. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984)

  26. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput. 44, 71–79 (1985)

  27. Girault, V., Scott, L.R.: A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40, 1–19 (2003)

  28. Ciarlet Jr, P., Girault, V.: Condition inf-sup pour l’élément fini de Taylor-Hood \(P_2\)-iso-\(P_1\), 3-d; application aux équations de Maxwell. Comptes Rendus Math. 335(10), 827–832 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Boland, J.M., Nicolaides, R.A.: Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20(4), 722–731 (1983)

  30. Stenberg, R.: Analysis of mixed finite elements methods for the Stokes problem: a unified approach. Math. Comput. 42(165), 9–23 (1984)

  31. Boffi, D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34(2), 664–670 (1997)

  32. Girault, V., Lions, J.-L.: Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Port. Math. 58(1), 25–58 (2001)

  33. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Scott.

Additional information

V. Girault was partially supported by the Aziz Lecture Fund at the University of Maryland. R. H. Nochetto was partially supported by NSF Grant DMS-1109325. L. R. Scott was partially supported by NSF Grant DMS-1226019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girault, V., Nochetto, R.H. & Scott, L.R. Max-norm estimates for Stokes and Navier–Stokes approximations in convex polyhedra. Numer. Math. 131, 771–822 (2015). https://doi.org/10.1007/s00211-015-0707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0707-8

Mathematics Subject Classification

Navigation