Skip to main content
Log in

Neurochemical binding profiles of novel indole and benzofuran MDMA analogues

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT2a,b,c and NEα2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT2a,c receptors as compared to MDMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baumann MH, Rothman RB (2009) Neural and cardiac toxicities associated with 3,4-methylenedioxymethamphetamine (MDMA). Int Rev Neurobiol 88:257–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogen IL, Haug KH, Myhre O, Fonnum F (2003) Short- and long-term effects of MDMA (“ecstasy”) on synaptosomal and vesicular uptake of neurotransmitters in vitro and ex vivo. Neurochem Int 43:393–400

    Article  CAS  PubMed  Google Scholar 

  • Bouso JC, Doblin R, Farré M, Alcázar MA, Gómez-Jarabo G (2008) MDMA-assisted psychotherapy using low doses in a small sample of women with chronic posttraumatic stress disorder. J Psychoactive Drugs 40:225–236

    Article  PubMed  Google Scholar 

  • Canal CE, Cordova-Sintjago T, Liu Y, Kim MS, Morgan D, Booth RG (2013) Molecular pharmacology and ligand docking studies reveal a single amino acid difference between mouse and human serotonin 5-HT2A receptors that impacts behavioral translation of novel 4-phenyl-2-dimethylaminotetralin ligands. J Pharmacol Exp Ther 347:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  CAS  PubMed  Google Scholar 

  • CEREP Binding Assays, 2013. http://www.cerep.fr/cerep/users/pages/Downloads/Documents/Marketing/Pharmacology%20&%20ADME/Assay%20lists/Binding%20assays_2013.pdf

  • Chen SJ, Klann E, Gower MC, Powell CM, Sessoms JS, Sweatt JD (1993) Studies with synthetic peptide substrates derived from the neuronal protein neurogranin reveal structural determinants of potency and selectivity for protein kinase C. Biochemistry 32:1032–1039

    Article  CAS  PubMed  Google Scholar 

  • Congressional Budget Office 2012 The Veterans Health Administration treatments of PTSD and traumatic brain injury among recent combat veterans. The Congress of the United States. http://www.cbo.gov/sites/default/files/cbofiles/attachments/02-09-PTSD.pdf. Accessed 13 Mar 2014

  • Cukor J, Spitalnick J, Difede J, Rizzo A, Rothbaum BO (2009) Emerging treatments for PTSD. Clin Psychol Rev 29:715–726

    Article  PubMed  Google Scholar 

  • de Quervain DJ, Kolassa IT, Ackermann S, Aerni A, Boesiger P, Demougin P, Elbert T, Ertl V, Gschwind L, Hadziselimovic N, Hanser E, Heck A, Hieber P, Huynh KD, Klarhöfer M, Luechinger R, Rasch B, Scheffler K, Spalek K, Stippich C, Vogler C, Vukojevic V, Stetak A, Papassotiropoulos A (2012) PKCα is genetically linked to memory capacity in healthy subjects and to risk for posttraumatic stress disorder in genocide survivors. Proc Natl Acad Sci U S A 109:8746–8751

    Article  PubMed  PubMed Central  Google Scholar 

  • Doblin R (2002) A clinical plan for MDMA (ecstasy) in the treatment of posttraumatic stress disorder (PTSD): partnering with FDA. J Psychoactive Drugs 34:185–194

    Article  PubMed  Google Scholar 

  • Dumont GJ, Sweep FC, van der Steen R, Hermsen R, Donders AR, Touw DJ, van Gerven JM, Buitelaar JK, Verkes RJ (2009) Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Soc Neurosci 4:359–366

    Article  CAS  PubMed  Google Scholar 

  • Escubedo E, Abad S, Torres I, Pubill JCD (2011) Comparative neurochemical profile of 3,4-methylenedioxymethamphetamine and its metabolite alpha-methyldopamine on key targets of MDMA neurotoxicity. Neurochem International 58:92–101

    Article  CAS  Google Scholar 

  • Garcia-Ratés S, Camarasa J, Escubedo E, Pubill D (2007) Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation. Toxicol Appl Pharmacol 223:195–205

    Article  PubMed  Google Scholar 

  • Garcia-Ratés S, Camarasa J, Sánchez-García AI, Gandía L, Escubedo E, Pubill D (2010) The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation. Toxicol Appl Pharmacol 244:344–353

    Article  PubMed  Google Scholar 

  • Greer G, Tolbert R (1986) Subjective reports of the effects of MDMA in clinical setting. J Psychoactive Drugs 18:319–327

    Article  CAS  PubMed  Google Scholar 

  • Grinspoon L, Bakalar JB (1986) Can drugs be used to enhance the psychotherapeutic process? Am J Psychother 40:393–404

    CAS  PubMed  Google Scholar 

  • Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuro-Psychopharmacol Biol Psychiatry 45:54–63

    Article  CAS  Google Scholar 

  • Heim C, Nemeroff CB (2009) Neurobiology of posttraumatic stress disorder. CNS Spectr 14:13–24

    Article  PubMed  Google Scholar 

  • Herraiz T, Brandt SD (2013) 5-(2-Aminopropyl)indole (5-IT): a psychoactive substance used for recreational purposes is an inhibitor of human monoamine oxidase (MAO. Drug Test Anal. doi:10.1002/dta

    PubMed  Google Scholar 

  • Hofmann A., Troxler F (1963) Nouveaux derives de l’indole et leur preparation. FR1344579 (A). http://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19631129&DB=&locale=en_EP&CC=FR&NR=1344579A&KC=A&ND=2. Accessed 12 Mar 2014

  • Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL (2013) Neurochemical profiles of some novel psychoactive substances. Eur J Pharmacol 700:147–151

    Article  CAS  PubMed  Google Scholar 

  • Janowsky A, Berger P, Vocci F, Labarca R, Skolnick P, Paul SM (1986) Characterization of sodium-dependent [3H]GBR-12935 binding in brain: a radioligand for selective labelling of the dopamine transport complex. J Neurochem 46:1272–1276

    Article  CAS  PubMed  Google Scholar 

  • King LA (2013) New phenethylamines in Europe. Drug Test Anal. doi:10.1002/dta.1570

    Google Scholar 

  • Konopatskaya O, Poole AW (2010) Protein kinase Calpha: disease regulator and therapeutic target. Trends Pharmacol Sci 31:8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krejsa CM, Horvath D, Rogalski SL, Penzotti JE, Mao B, Barbosa F, Migeon JC (2003) Predicting ADME properties and side effects: the BioPrint approach. Curr Opin Drug Discov Devel 6:470–480

    CAS  PubMed  Google Scholar 

  • Kronstrand R, Roman M, Dahlgren M, Thelander G, Wikström M, Druid H (2013) A cluster of deaths involving 5-(2-aminopropyl)indole (5-IT. J Anal Toxicol 37:542–546

    Article  CAS  PubMed  Google Scholar 

  • Leonardi ET, Azmitia EC (1994) MDMA (ecstasy) inhibition of MAO type a and type B: comparisons with fenfluramine and fluoxetine (Prozac). Neuropsychopharmacol 10:231–238

    Article  CAS  Google Scholar 

  • Lettfuss NY, Fischer K, Sossi V, Pichler BJ, von Ameln-Mayerhofer A (2012) Imaging DA release in a rat model of L-DOPA-induced dyskinesias: a longitudinal in vivo PET investigation of the antidyskinetic effect of MDMA. NeuroImage 63:423–433

    Article  CAS  PubMed  Google Scholar 

  • Marshall RD, Beebe KL, Oldham M, Zaninelli R (2001) Efficacy and safety of paroxetine treatment for chronic PTSD: a fixed-dose, placebo-controlled study. Am J Psychiatry 158:1982–1988

    Article  CAS  PubMed  Google Scholar 

  • McGranahan TM, Patzlaff NE, Grady SR, Heinemann SF, Booker TK (2011) α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J Neurosci 31:10891–10902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misuse of Drugs Act (1971) (amendment) order 2008. The Stationary Office, Great Britain. http://www.legislation.gov.uk/ukpga/1971/38/contents/enacted. Accessed 11 Mar 2014

  • Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R (2011) The safety and efficacy of {+/−}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25:439–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Martin SF, Yazar-Klosinski B, Michel Y, Brewerton TD, Doblin R (2013) Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol 27:28–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Enoch D, Seidl E, Thomas H (1976) 6.7-Dihydroxycoumarin (Aesculetin) as a substrate for catechol-o-methyltransferase (author’s transl. Z Naturforsch C 31:280–284

    PubMed  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Conversion of L-tyrosine to 3,4-dihydroxyphenylalanine by cell-free preparations of brain and sympathetically innervated tissues. Biochem Biophys Res Commun 14:543–549

    Article  CAS  PubMed  Google Scholar 

  • Nelson ME, Bryant SM, Aks SE (2014) Emerging drugs of abuse. Emerg Med Clin North Am 32:1–28

    Article  PubMed  Google Scholar 

  • Nutt D (2014) Mind-altering drugs and research: from presumptive prejudice to a neuroscientific enlightenment? EMBO Rep 15:208–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehen P, Traber R, Widmer V, Schnyder UA (2013) Randomized, controlled pilot study of MDMA (±3,4-methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic post-traumatic stress disorder (PTSD. J Psychopharmacol 27:40–52

    Article  CAS  PubMed  Google Scholar 

  • Pandya AA, Yakel JL (2013) Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol 86:1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pentney AR (2001) An exploration of the history and controversies surrounding MDMA and MDA. J Psychoactive Drugs 33:213–221

    Article  CAS  PubMed  Google Scholar 

  • Perovic S, Müller WE (1995) Pharmacological profile of hypericum extract. Effect on serotonin uptake by postsynaptic receptors. Arzneimittelforschung 45:1145–1148

    CAS  PubMed  Google Scholar 

  • Porter RH, Benwell KR, Lamb H, Malcolm CS, Allen NH, Revell DF, Adams DR, Sheardown MJ (1999) Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells. Br J Pharmacol 128:13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman RB, Baumann MH (2003) Monoamine transporters and psychoactive drugs. Eur J Pharmacol 479:23–40

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  CAS  PubMed  Google Scholar 

  • Seetohul LN, Pounder DJ (2013) Four fatalities involving 5-IT. J Anal Toxicol 37:447–451

    Article  CAS  PubMed  Google Scholar 

  • Shakespeare-Finch J, Lurie-Beck J (2014) A meta-analytic clarification of the relationship between posttraumatic growth and symptoms of posttraumatic distress disorder. J Anxiety Disord 28:223–229

    Article  PubMed  Google Scholar 

  • Shulgin A (1997) Tihkal: the continuation Alexander & Ann Shulgin. http://www.erowid.org/library/books_online/tihkal/tihkal48.shtml

  • Thomas SR (2010) Psychedelics and the human receptorome. PLoS One 5:e9019

    Article  Google Scholar 

  • Tsugeno Y, Hirashiki I, Ogata F, Ito A (1995) Regions of the molecule responsible for substrate specificity of monoamine oxidase a and B: a chimeric enzyme analysis. J Biochem 118:974–980

    Article  CAS  PubMed  Google Scholar 

  • Verrico CD, Miller GM, Madras BKMDMA (2007) Ecstasy) and human dopamine, norepinephrine and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology 189:489–503

    Article  CAS  PubMed  Google Scholar 

  • Weyler W, Salach JI (1985) Purification and properties of mitochondrial monoamine oxidase type A from human placenta. J Biol Chem 260:13199–13207

    CAS  PubMed  Google Scholar 

  • Wood DM, Sedefov R, Cunningham A, Dargan PI (2015) Prevalence of use and acute toxicity associated with the use of NBOMe drugs. Clin Toxicol (Phila) 53:85–92

    Article  CAS  Google Scholar 

  • Zhao Z, Baros AM, Zhang HT, Lapiz MD, Bondi CO, Morilak DA, O’Donnell JM (2008) Norepinephrine transporter regulation mediates the long-term behavioral effects of the antidepressant desipramine. Neuropsychopharmacol. 33:3190–3200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Mr. Yossi Hofi for his excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob A. Shimshoni.

Electronic supplementary material

Table S1

(DOCX 30 kb)

Table S2

(DOCX 27 kb)

Table S3

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimshoni, J.A., Winkler, I., Golan, E. et al. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues. Naunyn-Schmiedeberg's Arch Pharmacol 390, 15–24 (2017). https://doi.org/10.1007/s00210-016-1297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1297-4

Keywords

Navigation