Skip to main content

Advertisement

Log in

3′,4′-Dihydroxyflavonol reduces vascular contraction through Ca2+ desensitization in permeabilized rat mesenteric artery

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

3′,4′-Dihydroxyflavonol (DiOHF) exerts endothelium-independent relaxation in rat aortic rings. In this study, we hypothesized that DiOHF reduces vascular contraction through Ca2+ desensitization in permeabilized third-order branches of rat mesenteric arteries. The third-order branches of rat mesenteric arteries were permeabilized with β-escin and subjected to tension measurement. Cumulative addition of phenylephrine (0.3–30 μM) produced concentration-dependent vascular contraction of endothelium-intact and endothelium-denuded arterial rings, which were inhibited by pretreatment with DiOHF (10, 30, or 100 μM). In addition, DiOHF dose-dependently decreased vascular contractions induced by 3.0 μM phenylephrine. β-Escin-permeabilized third-order branches of mesenteric arteries were contracted with Ca2+, NaF, or guanosine-5′-(γ-thio)triphosphate (GTPγS) 30 min after pretreatment with DiOHF or vehicle. Pretreatment with DiOHF for 30 min inhibited vascular contraction induced by cumulative additions of Ca2+ (pCa 9.0–6.0) or NaF (4.0–16.0 mM) in permeabilized arterial rings. Cumulative addition of DiOHF also reduced vascular contraction induced by Ca2+-controlled solution of pCa 6.0, 16.0 mM NaF, or 100 μM GTPγS in permeabilized arterial rings. DiOHF inhibited the increase in vascular tension provoked by calyculin A, even though it did not affect vascular tension already produced by calyculin A. DiOHF accelerated the relaxation induced by rapidly lowering Ca2+. DiOHF reduced vascular contraction through Ca2+ desensitization in permeabilized third-order branches of rat mesenteric arteries. These results suggest that DiOHF may have a therapeutic potential in the treatment of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AlF 4 :

Aluminum tetrafluoride

[Ca2+]i :

Intracellular free calcium concentration

CPI17:

PKC-potentiated inhibitory protein for heterotrimeric MLCP of 17 kDa

DiOHF:

3′,4′-Dihydroxyflavonol

EGTA:

Ethylene glycol bis(2-aminoethyl ether)-N,N,NN′-tetraacetic acid

GPCRs:

G protein-coupled receptors

GTP:

Guanosine-5′-triphosphate

GTPγS:

Guanosine-5′-(γ-thio)triphosphate

MLC:

Myosin light chain

MLCK:

Myosin light chain kinase

MLCP:

Myosin light chain phosphatase

MYPT1:

Myosin phosphatase targeting subunit 1

NaF:

Sodium fluoride

pCa:

−log [Ca2+]

PDBu:

Phorbol 12,13-dibutyrate

PIPES:

Piperazine-1,4-bis(2-ethanesulfonic acid)

PKC:

Protein kinase C

SPC:

Sphingosylphosphorylcholine

SR:

Sarcoplasmic reticulum

References

  • Antonny B, Sukumar M, Bigay J, Chabre M, Higashijima T (1993) The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies. J Biol Chem 268:2393–2402

    PubMed  CAS  Google Scholar 

  • Baek I, Jeon SB, Song MJ, Yang E, Sohn UD, Kim IK (2009) Flavone attenuates vascular contractions by inhibiting RhoA/Rho kinase pathway. Korean J Physiol Pharmacol 13:201–207

    Article  PubMed  CAS  Google Scholar 

  • Blackmore PF, Exton JH (1986) Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J Biol Chem 261:11056–11063

    PubMed  CAS  Google Scholar 

  • Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49:2774–2779

    Article  PubMed  CAS  Google Scholar 

  • Chan EC, Pannangpetch P, Woodman OL (2000) Relaxation to flavones and flavonols in rat isolated thoracic aorta: mechanism of action and structure–activity relationships. J Cardiovasc Pharmacol 35:326–333

    Article  PubMed  CAS  Google Scholar 

  • Chan EC, Drummond GR, Woodman OL (2003) 3′, 4′-Dihydroxyflavonol enhances nitric oxide bioavailability and improves vascular function after ischemia and reperfusion injury in the rat. J Cardiovasc Pharmacol 42:727–735

    Article  PubMed  CAS  Google Scholar 

  • Choi SK, Ahn DS, Lee YH (2009) Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery. Cardiovasc Res 82:324–332

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Taylor JA (1987) Fluoroaluminates mimic guanosine 5′-[gamma-thio]triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes. Role for the guanine nucleotide regulatory protein Gp in signal transduction. Biochem J 241:409–414

    PubMed  CAS  Google Scholar 

  • Engler MB, Engler MM (2006) The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease. Nutr Rev 64:109–118

    Article  PubMed  Google Scholar 

  • Eto M, Ohmori T, Suzuki M, Furuya K, Morita F (1995) A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem (Tokyo) 118:1104–1107

    CAS  Google Scholar 

  • Fujita A, Takeuchi T, Nakajima H, Nishio H, Hata F (1995) Involvement of heterotrimeric GTP-binding protein and Rho protein, but not protein kinase C, in agonist-induced Ca2+ sensitization of skinned muscle of guinea pig vas deferens. J Pharmacol Exp Ther 274:555–561

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Itoh T, Kubota Y, Kuriyama H (1989) Effects of guanosine nucleotides on skinned smooth muscle tissue of the rabbit mesenteric artery. J Physiol 408:535–547

    PubMed  CAS  Google Scholar 

  • Gilman AG (1984) Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J Clin Invest 73:1–4

    Article  PubMed  CAS  Google Scholar 

  • Gong MC, Iizuka K, Nixon G, Browne JP, Hall A, Eccleston JF, Sugai M, Kobayashi S, Somlyo AV, Somlyo AP (1996) Role of guanine nucleotide-binding proteins—ras-family or trimeric proteins or both—in Ca2+ sensitization of smooth muscle. Proc Natl Acad Sci USA 93:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Hirano K (2007) Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle. J Pharmacol Sci 104:109–115

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Nakano T, Erdodi F, Hartshorne DJ (2004) Myosin phosphatase: structure, regulation and function. Mol Cell Biochem 259:197–209

    Article  PubMed  CAS  Google Scholar 

  • Jeon SB, Jin F, Kim JI, Kim SH, Suk K, Chae SC, Jun JE, Park WH, Kim IK (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem Biophys Res Commun 343:27–33

    Article  PubMed  CAS  Google Scholar 

  • Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol 587:2537–2553

    Article  PubMed  CAS  Google Scholar 

  • Kanaho Y, Moss J, Vaughan M (1985) Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum. J Biol Chem 260:11493–11497

    PubMed  CAS  Google Scholar 

  • Kitazawa T, Kobayashi S, Horiuchi K, Somlyo AV, Somlyo AP (1989) Receptor-coupled, permeabilized smooth muscle. J Biol Chem 264:5339–5342

    PubMed  CAS  Google Scholar 

  • Kitazawa T, Masuo M, Somlyo AP (1991) G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci U S A 88:9307–9310

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T, Takizawa N, Ikebe M, Eto M (1999) Reconstitution of protein kinase C-induced contractile Ca2+ sensitization in triton X-100-demembranated rabbit arterial smooth muscle. J Physiol 520:139–152

    Article  PubMed  CAS  Google Scholar 

  • Kizub IV, Pavlova OO, Johnson CD, Soloviev AI, Zholos AV (2010) Rho kinase and protein kinase C involvement in vascular smooth muscle myofilament calcium sensitization in arteries from diabetic rats. Br J Pharmacol 159:1724–1731

    Article  PubMed  CAS  Google Scholar 

  • Mbikou P, Fajmut A, Brumen M, Roux E (2011) Contribution of Rho kinase to the early phase of the calcium-contraction coupling in airway smooth muscle. Exp Physiol 96:240–258

    Article  PubMed  CAS  Google Scholar 

  • Murthy KS, Makhlouf GM (1994) Fluoride activates G protein-dependent and -independent pathways in dispersed intestinal smooth muscle cells. Biochem Biophys Res Commun 202:1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Niiro N, Koga Y, Ikebe M (2003) Agonist-induced changes in the phosphorylation of the myosin-binding subunit of myosin light chain phosphatase and CPI17, two regulatory factors of myosin light chain phosphatase, in smooth muscle. Biochem J 369:117–128

    Article  PubMed  CAS  Google Scholar 

  • Nishimura J, Kolber M, Breemen C (1988) Norepinephrine and GTPγS increase myofilament Ca2+ sensitivity in α-toxin-permeabilized arterial smooth muscle. Biochem Biophys Res Commun 157:677–683

    Article  PubMed  CAS  Google Scholar 

  • Otto B, Steusloff A, Just I, Aktories K, Pfitzer G (1996) Role of Rho proteins in carbachol-induced contractions in intact and permeabilized guinea-pig intestinal smooth muscle. J Physiol 496:317–329

    PubMed  CAS  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Qin CX, Chen X, Hughes RA, Williams SJ, Woodman OL (2008) Understanding the cardioprotective effects of flavonols: discovery of relaxant flavonols without antioxidant activity. J Med Chem 51:1874–1884

    Article  PubMed  CAS  Google Scholar 

  • Ryu SK, Ahn DS, Cho YE, Choi SK, Kim YH, Morgan KG, Lee YH (2006) Augmented sphingosylphosphorylcholine-induced Ca2+-sensitization of mesenteric artery contraction in spontaneously hypertensive rat. Naunyn Schmiedebergs Arch Pharmacol 373:30–36

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    PubMed  CAS  Google Scholar 

  • Song MJ, Baek I, Seo M, Kim SH, Suk K, Woodman OL, Williams SJ, Kim IK (2010) Effects of 3′,4′-dihydroxyflavonol on vascular contraction in rat aortic rings. Clin Exp Pharmacol Physiol 37:803–810

    Article  PubMed  CAS  Google Scholar 

  • Todoroki-Ikeda N, Mizukami Y, Mogami K, Kusuda T, Yamamoto K, Miyake T, Sato M, Suzuki S, Yamagata H, Hokazono Y, Kobayashi S (2000) Sphingosylphosphorylcholine induces Ca2+-sensitization of vascular smooth muscle contraction: possible involvement of rho-kinase. FEBS Lett 482:85–90

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Dusting GJ, May CN, Woodman OL (2004) 3′,4′-Dihydroxyflavonol reduces infarct size and injury associated with myocardial ischaemia and reperfusion in sheep. Br J Pharmacol 142:443–452

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Fei K, Xu YW, Wang LX, Chen YQ (2009) Dihydroxyflavonol reduces post-infarction left ventricular remodeling by preventing myocyte apoptosis in the non-infarcted zone in goats. Chin Med J (Engl) 122:61–67

    CAS  Google Scholar 

  • Weber LP, Van Lierop JE, Walsh MP (1999) Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments. J Physiol 516:805–824

    Article  PubMed  CAS  Google Scholar 

  • Wilson DP, Susnjar M, Kiss E, Sutherland C, Walsh MP (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem J 389:763–774

    Article  PubMed  CAS  Google Scholar 

  • Woodman OL, Chan E (2004) Vascular and anti-oxidant actions of flavonols and flavones. Clin Exp Pharmacol Physiol 31:786–790

    Article  PubMed  CAS  Google Scholar 

  • Woodman OL, Malakul W (2009) 3′,4′-Dihydroxyflavonol prevents diabetes-induced endothelial dysfunction in rat aorta. Life Sci 85:54–59

    Article  PubMed  CAS  Google Scholar 

  • Yang E, Jeon SB, Baek I, Chen ZA, Jin Z, Kim IK (2009) 17β-Estradiol attenuates vascular contraction through inhibition of RhoA/Rho kinase pathway. Naunyn Schmiedebergs Arch Pharmacol 380:35–44

    Article  PubMed  CAS  Google Scholar 

  • Yang E, Cho JY, Sohn UD, Kim IK (2010) Calcium sensitization induced by sodium fluoride in permeabilized rat mesenteric arteries. Korean J Physiol Pharmacol 14:51–57

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Jones KA, Perkins WJ, Kai T, Warner DO (2001) Calcium sensitization produced by G protein activation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 281:L631–L638

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0014066) and the Brain Korea 21 Project in 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyeom Kim.

Additional information

Hye Young Kim and Young Mi Seok contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.Y., Seok, Y.M., Woodman, O.L. et al. 3′,4′-Dihydroxyflavonol reduces vascular contraction through Ca2+ desensitization in permeabilized rat mesenteric artery. Naunyn-Schmiedeberg's Arch Pharmacol 385, 191–202 (2012). https://doi.org/10.1007/s00210-011-0697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0697-8

Keywords

Navigation